
Optimally Spaced Autoencoder

Daw-Chih Liou Cheng-Yuan Liou

Department of Computer Science and Information Engineering
National Taiwan University

Taiwan, R.O.C.
 cyliou@csie.ntu.edu.tw

Abstract— This paper presents a method for image

restoration that uses a new object function for a multilayer
perceptron (MLP) network. The training algorithm of the
MLP aims to maximize the separation between patterns
from different classes, while minimizing the distances
between patterns from the same class. The trained MLP
serves as a transformation encoder, mapping the pattern
space into a new space where patterns from different
classes are distinctly separated. This encoder accomplishes
the ‘optimally spaced coding’ directly. It will enable
effective resolution of challenging classification problems
and restoration of severely corrupted images.

Keywords—pattern recognition; classification; image restoration;
vision; character recognition, optimally spaced codes

1. Introduction
The kernel function introduced in SVM [2] is a manually
designed encoder. It transforms the space of a collection of
patterns into a higher dimensional space. It is expected that a
better discrimination, with certain degree of penalty, could be
accomplished with such encoder by using a single perceptron.
It is designed, originally, for two-class classification. The
capsule network [7] could accommodate the abstract attributes
of the whole image. The variations of a digit can be
recognized, visually, by perturbing its trained attributes. The
Bi-perceptron algorithm [3] accomplishes perfect
classification, 100% correction, for any training dataset
without any transformation encoder and gets high
performance on testing dataset. The tiling algorithm [4] cannot
tolerate any noisy pattern. This work further devises a new
object function, or cost function, for the MLP that can
facilitate and resolve the classification. The trained MLP is
itself an ideal kernel function for a collection of images. With
abstract attributes saved in neural weights from the whole
image, it can tolerate noisy images.

2 Single-layer perceptron encoder

We formulate the training algorithm for a single layer
perceptron. Assume that the values of input units can only be
–1 or 1. In order to obtain distinct output codes for different
class patterns, we redesign the object function for the MLP.
This new object function is the overall inconsistence with the
goal, named ‘repellence energy’. Write,


P

p

P

p

pprep yydE
1 2

21 2)()()),((
2
1


P

p

P

p
ppE

1 2

21
.

Set 



P

p

P

p

M

m

p
m

p
m

rep yyE
1 2

21

1

2)()()(
2
1

, (1)

where)(1p
my or)(2p

my is an M-dimensional output
representation (code) corresponding to the p1 or p2 pattern. M
is the number of neurons in the single layer. This repellence
energy will force the representations to evolve in an M-
dimensional hypercube space. Instead of the Hamming
distance, the Euclidean distance is used as the distance
function d in the derivation. Given P input patterns {x(1),
x(2), …, x(P)}, where the rth pattern x(r) =  )()(

2
)(

1 ... r
N

rr xxx is
an N-tuple bipolar binary vector. In this case, each pattern
belongs to a single class. There are total K classes. The vector
y(r) is the output vector of the layer neurons corresponding to
the input pattern x(r). The goal is to maximize the distance
between every pair of output representations of different
classes such that each class patterns is isolated from all other
class patterns as far as possible. The overall distance is
indicated by the total value of the energy. This energy is
different from the covariance hypothesis introduced in [1] [8]
and this encoder is different from those in [5].

To meet this goal, we reduce the energy E by means of the
gradient descent rule [6] [9]. The algorithm for adjusting the
neuron weights to decrease this energy is in below.

By differentiation, the gradient descent of the energy

21 ppE is

7979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

 

 

         ,11
2
1

)(
)(
)()(

)(
)(

)(2)()(2)()()(

1

)(

)(

)()(

)(

)(
)()(

1

)()(
)()(

221121

2

2

21

1

1
21

21
2121

p
j

p
i

p
j

p
i

p
i

p
i

M

m ij

p
m

p
m

p
m

ij

p
m

p
m

p
mp

m
p

m

M

m ij

p
m

ij

p
mp

m
p

m
ij

pp

xyxyyy

w
net

net
netf

w
net

net
netfyy

w
y

w
yyy

w
E




























































where





N

j
jijiii xwnetnetfy

1
,),(and

.
)exp(1
)exp(1) 5.0(tanh)(

i

i
ii net

netnetnetf





Note that

 .;0)()()()(21

imfor
w

net
w

net
ij

p
m

ij

p
m 









The updating equations for the weights are

,
ij

ijij w
Eww




  (2)

where η is a positive learning constant. The threshold values
wi(N+1) are updated in exactly the same way as that for the
weights. Their updating equations are

,))())(((
2

2)(2)()()(
)1()1(

2121 p
i

p
i

p
i

p
iNiNi yyyyww  



and the fixed input is of value 1Nx = -1.
The initial weights may be set as wij = 0 for all i≠j and wij

= 1 for i = j. These are orthogonal weights. Note that all the
patterns will map (encode) to themselves using these weights.
We then feed patterns one by one into the network and save
their corresponding output vectors in an array. We calculate
the Euclidean distance between every pair of output vectors of
different classes. We use a square matrix D to store these
distances. The value of its entry D{i,j} is the distance,

),()()(ji pp yyd , between the output vector)(ipy and the

output vector)(jpy (in response to the pi pattern and the pj
pattern). Thus, the distance matrix D is symmetric and has
zeros in all its diagonal entries. Among all the pairs of output
vectors, we pick one pair that has the minimum distance. Then
we use this pair of output vectors (indexed as pmin

1 and pmin
2)

together with their corresponding patterns in the updating (2)
to increase their distance.

For the next iteration, we feed all the patterns into the
updated network again. We update the distance matrix D and
increase the minimum distance. We repeat this batch
procedure until the minimum distance cannot be increased or
it is greater than a predetermined value.

Assume the patterns belong to K classes X1, X2, … XK,
where class Xk contains Pk patterns { x(1), x(2) , …, x(Pk) }. The
goal is to maximize the distance between every pair of output

vectors that belong to different classes and minimize the
distance between every pair of output vectors that belong to
the same class. To meet this goal, we also need an object
function that can provide the attraction energy for the same
class patterns. This can be done by reversing the sign of the
repellence energy, (1). The devised attraction object function
for the same class patterns is in below.

The devised attraction energy is

  
k

k

k

k

k

k
kk

k

k

kk

P

p

P

p

P

p
pp

P

p

ppatt EyydE
1 1 2

21
2

21 2)()()),((
2
1

; (3)

and

},))(1())(1){(()(2)()(2)()()(22112121
kkkkkkkk p

j
p

i
p

j
p

i
p

i
p

i
ij

pp xyxyyy
w

E






 (4)

where





M

i

p
i

p
i

pp
pp

kkkk

kk
yyyydE

1

2)()(2)()(.)(
2
1)),((

2
1 2121

21

To minimize attE , we update the weights using the steepest
descent method as follows:

,
21

ij

pp
ijij w

E
ww kk




  (5)

for k = 1,..., Pk . The thresholds are adjusted in a similar way
as that for Erep.

The procedure for operating this algorithm is similar as the

former one. We randomly pick a pair of patterns from the
same class. We use these two patterns as input vectors

(denoted as)(1

x kp and)(2

x kp) and feed them into the

network to obtain output responses (denoted as)(1
kpy and

)(2
kpy). We calculate the distances between every pair of

output vectors, which are produced by patterns in the same
class. We pick the pair which has the maximum distance.
Then, use this pair of output vectors and their corresponding
input patterns in (5) to decrease the distance.

We may employ a mixed strategy to operate the repellence

force in (2) and the attraction force in (5) in a sequential mode.
We randomly select two patterns from all classes. When these
two patterns come from a same class, we use (5) to pull them
close together; when they come from different classes we use
(2) to push them far apart from each other. The network is
trained until the following two conditions are satisfied: (1) the
maximum distance among all the pairs of output vectors
belonging to the same class is below a predetermined
threshold. (2) The minimum distance among all the pairs of
output vectors belonging to different classes exceeds a
predetermined threshold. Otherwise, the training will continue

8

until no more improvement in either the maximum or
minimum distance can be achieved.

3. Multilayer perceptron encoder

The way to construct the encoder for the multilayer perceptron,
shown in Fig. 1, is to extend this algorithm backwards to a
deep bottom layer as the BP algorithm does.

Fig. 1: A multilayer network.

The reason for doing so is that we can take advantage of the

nonlinear mapping ability of a multilayer perceptron to obtain
ideal representations in the output layer. We expect that a
multilayer perceptron will have the potential to uniformly
distribute the representations on hypercube corners and to map
the fewest corners for each class with noisy patterns. The
derivation is similar to that for the BP algorithm. As before,
we require that the distances between the output
representations of different classes must be maximized. The
weights between the output layer and its connected hidden
layer are adjusted by the same updating rule used in (2). All
the lower hidden layers are trained backwards. The local
gradient of the upper layer is propagated to the next lower
layer, and their weights are adjusted accordingly. The energy
function is


 


P

p

P

p

pprep oodE
1 1

2)()(

1 2

21)),((
2
1


 


P

p

P

p
ppE

1 11 2

21


  


P

p

P

p

I

i

p
i

p
i

rep ooE
1 1 1

2)()(

1 2

21)(
2
1

 (6)

The local gradient δoi for the output neuron oi is defined as

 ,
i

i

i
o net

o
o
E

i 







where oi is obtained as in (2). We calculate the local gradients
for different input patterns p1 and p2. They are

)).)(1(
2
1)((

)))(1(
2
1)((

2)()()()(

2)()()()(

2212

1211

p
i

p
i

p
i

p
oi

p
i

p
i

p
i

p
oi

ooo

andooo









Accordingly, the local gradients for hidden neurons are
obtained as

.)(1(
2
1

,)(1(
2
1

;)(1(
2
1

,)(1(
2
1

)(2)()(

)(2)()(

)(2)()(

)(2)()(

222

111

222

111

















r
rk

p
zr

p
k

p
yk

r
rk

p
zr

p
k

p
yk

r
rj

p
or

p
j

p
zj

r
rj

p
or

p
j

p
zj

vy

vy

wz

wz









The equations listed above show that the local gradients are
the weighted sums of the local gradients of their connected
upper layer. Then the weights can be updated by the local
gradient:

.

,

,

)()()()(

)()()()(

)()()()(

2211

2211

2211

p
l

p
yk

p
l

p
ykkl

p
k

p
zj

p
k

p
zjjk

p
j

p
oi

p
j

p
oiij

xxu

yyv

zzw













We may reverse the sign of Erep to obtain the attraction
energy. This attraction energy provides attraction forces
among representations in the same class. We skip its algorithm.
We operate these two kind energies for every two patterns
according to their class membership.

4 Experiments and Discussions

4.1 Characters recognition

In this section we test the proposed method with
experiments. The first experiment is recognition of characters.
The pattern set contains 52 characters (A to Z and a to z).
Each character is stored as a binary image of size of 16 pixels
 16 pixels as shown in Fig. 2. Each pattern is a vector
containing one image. Each pattern is a class of its own. We
construct a single-layer perceptron with 256+1 input units and
256 output neurons. Each output neuron is fully connected
with all input units and a threshold unit. The training results

Fig. 2: A character image.

are shown in Fig. 3, Fig. 4 and Fig. 5. In Fig. 3, the bottom
green line marked ‘input’, we plot the sorted 52 minimum
distances for all 52 characters where each minimum distance
is the distance between each character and its closest character
among the rest 51 characters. For each output encoded
representation of a single character, we calculate its Hamming

x y z o

1 k j i

u v w

9

distances to the rest 51 output representations and record the
minimum one in the four color lines above the bottom green
line. These four lines record the performances under different
initial conditions and different numbers of hidden layers. As
shown in Fig. 3, the minimum distances for all characters are
all less than 90, the curve marked with -input-. The minimum
distances of the coded representations are all greater than 100.
The red curve marked with ‘-output 1-’ is obtained by using
orthogonal initial weights with one hidden layer. The green
curve marked with ‘-output 2-’ is obtained by using small
random initial weights with one hidden layer. We also use the
multilayer perceptron with three hidden layers as in Fig. 1 to
do this experiment and plot the performances in this figure. In
the multilayer perceptron, each layer has 256 neurons. The
dark blue curve marked with ‘-output 3-’ is obtained by setting
the orthogonal initial weights for all layers. The light red
curve marked with ‘-output 4-’ is obtained by setting small
random initial weights. From this figure, the encoded
representations have larger distances than those of input
patterns. It will be relatively easier to discriminate these
representations in the output coding space than discriminate
the image patterns in the input space by using the Hamming
distance.

To see the distribution of these representations, we assume
each representation evenly distributed on hypercube corners,
(2256/52), in the hidden hypercube space. The output
representation of each pattern is considered as a center of
these corners. Therefore, a center should be at a 222 Hamming
distance to another center. The radius of the center is less than
111, because 52/2)(256256111

0   ii . Thus the distance
between two centers is approximately 222. This kind radius is
ideal. The experiments show that we can separate the
representations with a distance more than half the idea radius.
To show, roughly, the sizes of these trained separation radius,
we also plot the maximum Hamming distance between each
encoded representation and the rest 21 representations in Fig.
4 in a similar way as those for Fig. 3. We also plot the
averaged Hamming distance for each representation and the
21 rest representations in Fig. 5 in a similar way as for Fig. 3.
As shown in Fig. 4, several maximum Hamming distances
approach the ideal radius 222. With such well separated
representations on the hypercube space, one can resolve noisy
characters in the outputs of the MLP.

We may use the output representations obtained by this
single layer perceptron as inputs to train the second hidden
layer. Then use the output representations of the second
hidden layer as inputs to train the third hidden layer. The
performance of the output representations of the third hidden
layer is similar to the performance curve, the ‘-output 4-’. In
this case all layers have 256 neurons.

4.2 Image restoration

In the next experiment, we use the encoder to develop the

network shown in Fig. 6 as an associative memory. There are
three layers in this network, the input units, the hidden layer,
and the output layer. This network is a replicator network with

feedbacks. The response of the output layer will be send back
to the input layer in the next iteration. There are only two
layers with sigmoid function neurons. The input layer
distributes signals to the hidden layer directly without any
modification. The input layer and the hidden layer are used to
develop highly separable internal representations for the above
52 patterns to tolerate noisy patterns. The output layer is used
to index these representations to their corresponding patterns.
As an associative memory, the output will evolve to a stable
state gradually. This stable state is the place where we store
the pattern. Given a corrupted pattern (search argument), one
corresponding stored pattern will be recalled through the
association of this corrupted pattern and a memorization
mechanism.

The training algorithm of this network is divided into two

stages. In the first stage, we train the weights between the
input units and the hidden layer. In the second stage, we train
the weights between the hidden layer and the output layer by
the BP algorithm using the 52 internal representations as
inputs and their corresponding patterns as the desired outputs.
In this case, each layer contains 256 neurons plus one fixed
unit with value -1. All neurons in a layer are fully connected
to the neurons of the next upper layer. In the first stage, we
use small random numbers as initial weights to start the
training of the weights between the input units and the hidden
layer. The results of the training are included in the former
section. We then save the 52 internal representations as inputs
and their corresponding patterns as the desired outputs, {(yp,
xp), P=1,..,52}, and use them to train the weights between the
hidden layer and the output layer. In the second stage, all
trained weights between the input units and the hidden layer
must be fixed. In this stage, we only train the weights between
the hidden units and the output layer using the BP algorithm:

 After training, we feed corrupted patterns to the network.
The corrupted patterns are generated by randomly reversing
30% of the 256 image pixels. Successive responses of the
output layer are recorded in Fig. 7. Fig. 7 shows the refined
characters for the first five iterations. Most corrupted patterns
will evolve to their stable patterns within five iterations. To
our knowledge, this is the best performance among all existing
methods.

 This encoder exhausts the flexibility of all neuron’s weights
to accomplish widely separated and isolated new
representations of all patterns in mapped space. One can
develop refined representations for patterns layer after layer or
train a multilayer network backwardly to obtain such
representations. This encoder also accomplishes an ideal MLP
kernel for the SVM for two-class problem.

10

Fig. 3: Bottom green line plots the minimum Hamming
distances for each of the 52 characters. Those minimum
Hamming distances for coded representations are plotted
above with different training parameters.

Fig. 4: The maximum distance between each encoded
representation and its most remote encoded representation
among the rest 51 representations.

Fig. 5: The averaged Hamming distances for the 52
representations.

 Fig. 6: The recurrent network

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

120

130

140

Output 1

Output 2
Output 3

Output 4

Input

0 10 20 30 40 50 60

60

80

100

120

140

160

180

200

220

Output 1

Output 2
Output 3

Output 4

Input

0 10 20 30 40 50 60
0

50

100

150

Output 1

Output 2

Output 3

Output 4

Input

= x'x'Mx'1 x'2

= xxMx 1 x 2

= yy Ny 1 y 2

feedback

11

 .

Fig. 7: Evolutionary recall of noisy characters. Training
characters are listed in the first column. The 30% corrupted
characters are in the second column. The recalled characters
for the first five iterations are in the rest five columns.

Finally, we briefly discuss the Erep algorithm. In the
algorithm, the repellence energy Erep is applied only to those
nearest neighbors along the border of different classes, Fig.8.
These neighbors are included in circles in the figure. These
neighbors are the most sensitive patterns for discrimination
and are the major patterns that cause difficult errors, local
minimums, during the BP training. The algorithm suggests
that one can insert a fixed perceptron right in between the
nearest neighbors in each circle as possible before any BP
training. These fixed perceptrons can discriminate sensitive
patterns and generate faithful representations for such
neighbors without training. The insertion technique is similar
to those in the Bi-perceptron algorithm with half strip. Or, one
can operate the SVM for nearest neighbors circle after circle,
Fig.8, to get the inserted perceptron.

Fig. 8: Neighbors of different classes

References

[1] S. Becker, G.E. Hinton, “Self-organizing neural network that
discovers surfaces in random-dot stereograms,” Nature,355,
1992, pp. 161-163

[2] C. Cortes, V.N. Vapnik, “Support vector networks,” Machine
Learning, 20,1995, pp. 273-297

[3] C.-Y. Liou, W-J. Yu, “Initializing the weights in multilayer
network with quadratic sigmoid function,” International
Conference on Neural Information Processing, ICONIP, pp.
1994, 1387-1392 , October 17-20, Seoul,

[4] M. Mézard, J.-P. Nadal, “Learning in feed-forward layered
networks: The tiling algorithm,” Journal of Physics A, 22,
1989, pp. 2191-2203

[5] W. Pedrycz, J. Waletzky, “Neural-network front ends in
unsupervised learning,” IEEE Trans. on Neural Networks 8,
1997, pp. 390-401

[6] D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning
representations by back-propagating errors,” Nature (Longon),
323, 1986, pp. 533-536

[7] S. Sabour, N. Frosst , G.E. Hinton, “Dynamic Routing
Between Capsules,” 31st Conference on Neural Information
Processing Systems. 2017, pp. 3859–3869

[8] T. J. Sejnowski, “Storing covariance with nonlinearly
interacting neurons,” Journal of Mathematical Biology, 4,
1977, pp. 303-321

[9] T. J. Sejnowski, C. R. Rosenberg, “NETalk: a parallel network
that learns to read aloud,” The Johns Hopkins University
Electrical Engineering and Computer Science Tech. Report,
JHU/EECS-86/01, 1986

12

