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Abstract— This paper presents a method for image 

restoration that uses a new object function for a multilayer 
perceptron (MLP) network. The training algorithm of the 
MLP aims to maximize the separation between patterns 
from different classes, while minimizing the distances 
between patterns from the same class. The trained MLP 
serves as a transformation encoder, mapping the pattern 
space into a new space where patterns from different 
classes are distinctly separated. This encoder accomplishes 
the ‘optimally spaced coding’ directly. It will enable 
effective resolution of challenging classification problems 
and restoration of severely corrupted images.  

Keywords—pattern recognition; classification; image restoration; 
vision; character recognition, optimally spaced codes  

 

1.   Introduction 
The kernel function introduced in SVM [2] is a manually 
designed encoder. It transforms the space of a collection of 
patterns into a higher dimensional space. It is expected that a 
better discrimination, with certain degree of penalty, could be 
accomplished with such encoder by using a single perceptron. 
It is designed, originally, for two-class classification. The 
capsule network [7] could accommodate the abstract attributes 
of the whole image. The variations of a digit can be 
recognized, visually, by perturbing its trained attributes. The 
Bi-perceptron algorithm [3] accomplishes perfect 
classification, 100% correction, for any training dataset 
without any transformation encoder and gets high 
performance on testing dataset. The tiling algorithm [4] cannot 
tolerate any noisy pattern. This work further devises a new 
object function, or cost function, for the MLP that can 
facilitate and resolve the classification. The trained MLP is 
itself an ideal kernel function for a collection of images. With 
abstract attributes saved in neural weights from the whole 
image, it can tolerate noisy images. 
 

 

2 Single-layer perceptron encoder 

We formulate the training algorithm for a single layer 
perceptron. Assume that the values of input units can only be 
–1 or 1. In order to obtain distinct output codes for different 
class patterns, we redesign the object function for the MLP. 
This new object function is the overall inconsistence with the 
goal, named ‘repellence energy’. Write, 
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where )( 1p
my or )( 2p

my  is an M-dimensional output 
representation (code) corresponding to the p1 or p2 pattern. M 
is the number of neurons in the single layer. This repellence 
energy will force the representations to evolve in an M-
dimensional hypercube space. Instead of the Hamming 
distance, the Euclidean distance is used as the distance 
function d in the derivation. Given P input patterns {x(1), 
x(2), …, x(P)}, where the rth pattern x(r) =  )()(

2
)(

1 ... r
N

rr xxx  is 
an N-tuple bipolar binary vector. In this case, each pattern 
belongs to a single class. There are total K classes. The vector 
y(r) is the output vector of the layer neurons corresponding to 
the input pattern x(r). The goal is to maximize the distance 
between every pair of output representations of different 
classes such that each class patterns is isolated from all other 
class patterns as far as possible. The overall distance is 
indicated by the total value of the energy. This energy is 
different from the covariance hypothesis introduced in [1] [8] 
and this encoder is different from those in [5]. 

To meet this goal, we reduce the energy E by means of the 
gradient descent rule [6] [9]. The algorithm for adjusting the 
neuron weights to decrease this energy is in below. 

By differentiation, the gradient descent of the energy 

21 ppE  is 
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The updating equations for the weights are  
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where η is a positive learning constant. The threshold values 
wi(N+1) are updated in exactly the same way as that for the 
weights. Their updating equations are 
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and the fixed input is of value 1Nx = -1. 
The initial weights may be set as wij = 0 for all i≠j and wij 

= 1 for i = j. These are orthogonal weights. Note that all the 
patterns will map (encode) to themselves using these weights. 
We then feed patterns one by one into the network and save 
their corresponding output vectors in an array. We calculate 
the Euclidean distance between every pair of output vectors of 
different classes. We use a square matrix D to store these 
distances. The value of its entry D{i,j} is the distance, 

),( )()( ji pp yyd , between the output vector )( ipy  and the 

output vector )( jpy  (in response to the pi pattern and the pj 
pattern). Thus, the distance matrix D is symmetric and has 
zeros in all its diagonal entries. Among all the pairs of output 
vectors, we pick one pair that has the minimum distance. Then 
we use this pair of output vectors (indexed as pmin

1 and pmin
2) 

together with their corresponding patterns in the updating (2) 
to increase their distance. 

For the next iteration, we feed all the patterns into the 
updated network again. We update the distance matrix D and 
increase the minimum distance. We repeat this batch 
procedure until the minimum distance cannot be increased or 
it is greater than a predetermined value. 

Assume the patterns belong to K classes X1, X2, … XK, 
where class Xk contains Pk patterns { x(1), x(2) , …, x(Pk) }. The 
goal is to maximize the distance between every pair of output 

vectors that belong to different classes and minimize the 
distance between every pair of output vectors that belong to 
the same class. To meet this goal, we also need an object 
function that can provide the attraction energy for the same 
class patterns. This can be done by reversing the sign of the 
repellence energy, (1). The devised attraction object function 
for the same class patterns is in below. 

 
The devised attraction energy is 
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descent method as follows: 

,
21

ij

pp
ijij w

E
ww kk




    (5) 

for k = 1,..., Pk . The thresholds are adjusted in a similar way 
as that for Erep. 

 
The procedure for operating this algorithm is similar as the 

former one. We randomly pick a pair of patterns from the 
same class. We use these two patterns as input vectors 

(denoted as )( 1

x kp  and )( 2

x kp  ) and feed them into the 

network to obtain output responses (denoted as )( 1
kpy  and 

)( 2
kpy ). We calculate the distances between every pair of 

output vectors, which are produced by patterns in the same 
class. We pick the pair which has the maximum distance. 
Then, use this pair of output vectors and their corresponding 
input patterns in (5) to decrease the distance. 

 
We may employ a mixed strategy to operate the repellence 

force in (2) and the attraction force in (5) in a sequential mode. 
We randomly select two patterns from all classes. When these 
two patterns come from a same class, we use (5) to pull them 
close together; when they come from different classes we use 
(2) to push them far apart from each other. The network is 
trained until the following two conditions are satisfied: (1) the 
maximum distance among all the pairs of output vectors 
belonging to the same class is below a predetermined 
threshold. (2) The minimum distance among all the pairs of 
output vectors belonging to different classes exceeds a 
predetermined threshold. Otherwise, the training will continue 
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until no more improvement in either the maximum or 
minimum distance can be achieved. 

3.  Multilayer perceptron encoder 

The way to construct the encoder for the multilayer perceptron, 
shown in Fig. 1, is to extend this algorithm backwards to a 
deep bottom layer as the BP algorithm does. 

 
Fig. 1: A multilayer network. 

 
The reason for doing so is that we can take advantage of the 

nonlinear mapping ability of a multilayer perceptron to obtain 
ideal representations in the output layer. We expect that a 
multilayer perceptron will have the potential to uniformly 
distribute the representations on hypercube corners and to map 
the fewest corners for each class with noisy patterns. The 
derivation is similar to that for the BP algorithm. As before, 
we require that the distances between the output 
representations of different classes must be maximized. The 
weights between the output layer and its connected hidden 
layer are adjusted by the same updating rule used in (2). All 
the lower hidden layers are trained backwards. The local 
gradient of the upper layer is propagated to the next lower 
layer, and their weights are adjusted accordingly. The energy 
function is 
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The local gradient δoi for the output neuron oi is defined as 
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where oi is obtained as in (2). We calculate the local gradients 
for different input patterns p1 and p2. They are  
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Accordingly, the local gradients for hidden neurons are 
obtained as  
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The equations listed above show that the local gradients are 
the weighted sums of the local gradients of their connected 
upper layer. Then the weights can be updated by the local 
gradient:  
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We may reverse the sign of Erep to obtain the attraction 
energy. This attraction energy provides attraction forces 
among representations in the same class. We skip its algorithm. 
We operate these two kind energies for every two patterns 
according to their class membership. 

4 Experiments and Discussions  

4.1  Characters recognition 

In this section we test the proposed method with 
experiments. The first experiment is recognition of characters. 
The pattern set contains 52 characters (A to Z and a to z). 
Each character is stored as a binary image of size of 16 pixels 
  16 pixels as shown in Fig. 2. Each pattern is a vector 
containing one image. Each pattern is a class of its own. We 
construct a single-layer perceptron with 256+1 input units and 
256 output neurons. Each output neuron is fully connected 
with all input units and a threshold unit. The training results  

 

 
Fig. 2: A character image. 

 
are shown in Fig. 3, Fig. 4 and Fig. 5. In Fig. 3, the bottom 
green line marked ‘input’, we plot the sorted 52 minimum 
distances for all 52 characters where each minimum distance 
is the distance between each character and its closest character 
among the rest 51 characters. For each output encoded 
representation of a single character, we calculate its Hamming 

x y z o

1 k j i

u v w

9



distances to the rest 51 output representations and record the 
minimum one in the four color lines above the bottom green 
line. These four lines record the performances under different 
initial conditions and different numbers of hidden layers. As 
shown in Fig. 3, the minimum distances for all characters are 
all less than 90, the curve marked with -input-. The minimum 
distances of the coded representations are all greater than 100. 
The red curve marked with ‘-output 1-’ is obtained by using 
orthogonal initial weights with one hidden layer. The green 
curve marked with ‘-output 2-’ is obtained by using small 
random initial weights with one hidden layer. We also use the 
multilayer perceptron with three hidden layers as in Fig. 1 to 
do this experiment and plot the performances in this figure. In 
the multilayer perceptron, each layer has 256 neurons. The 
dark blue curve marked with ‘-output 3-’ is obtained by setting 
the orthogonal initial weights for all layers. The light red 
curve marked with ‘-output 4-’ is obtained by setting small 
random initial weights. From this figure, the encoded 
representations have larger distances than those of input 
patterns. It will be relatively easier to discriminate these 
representations in the output coding space than discriminate 
the image patterns in the input space by using the Hamming 
distance. 

To see the distribution of these representations, we assume 
each representation evenly distributed on hypercube corners, 
(2256/52), in the hidden hypercube space. The output 
representation of each pattern is considered as a center of 
these corners. Therefore, a center should be at a 222 Hamming 
distance to another center. The radius of the center is less than 
111, because 52/2)( 256256111

0   ii . Thus the distance 
between two centers is approximately 222. This kind radius is 
ideal. The experiments show that we can separate the 
representations with a distance more than half the idea radius. 
To show, roughly, the sizes of these trained separation radius, 
we also plot the maximum Hamming distance between each 
encoded representation and the rest 21 representations in Fig. 
4 in a similar way as those for Fig. 3. We also plot the 
averaged Hamming distance for each representation and the 
21 rest representations in Fig. 5 in a similar way as for Fig. 3. 
As shown in Fig. 4, several maximum Hamming distances 
approach the ideal radius 222. With such well separated 
representations on the hypercube space, one can resolve noisy 
characters in the outputs of the MLP. 

We may use the output representations obtained by this 
single layer perceptron as inputs to train the second hidden 
layer. Then use the output representations of the second 
hidden layer as inputs to train the third hidden layer. The 
performance of the output representations of the third hidden 
layer is similar to the performance curve, the ‘-output 4-’. In 
this case all layers have 256 neurons. 
 
4.2  Image restoration 

 
In the next experiment, we use the encoder to develop the 

network shown in Fig. 6 as an associative memory. There are 
three layers in this network, the input units, the hidden layer, 
and the output layer. This network is a replicator network with 

feedbacks. The response of the output layer will be send back 
to the input layer in the next iteration. There are only two 
layers with sigmoid function neurons. The input layer 
distributes signals to the hidden layer directly without any 
modification. The input layer and the hidden layer are used to 
develop highly separable internal representations for the above 
52 patterns to tolerate noisy patterns. The output layer is used 
to index these representations to their corresponding patterns. 
As an associative memory, the output will evolve to a stable 
state gradually. This stable state is the place where we store 
the pattern. Given a corrupted pattern (search argument), one 
corresponding stored pattern will be recalled through the 
association of this corrupted pattern and a memorization 
mechanism. 

 
The training algorithm of this network is divided into two 

stages. In the first stage, we train the weights between the 
input units and the hidden layer. In the second stage, we train 
the weights between the hidden layer and the output layer by 
the BP algorithm using the 52 internal representations as 
inputs and their corresponding patterns as the desired outputs. 
In this case, each layer contains 256 neurons plus one fixed 
unit with value -1. All neurons in a layer are fully connected 
to the neurons of the next upper layer. In the first stage, we 
use small random numbers as initial weights to start the 
training of the weights between the input units and the hidden 
layer. The results of the training are included in the former 
section. We then save the 52 internal representations as inputs 
and their corresponding patterns as the desired outputs, {(yp, 
xp), P=1,..,52}, and use them to train the weights between the 
hidden layer and the output layer. In the second stage, all 
trained weights between the input units and the hidden layer 
must be fixed. In this stage, we only train the weights between 
the hidden units and the output layer using the BP algorithm: 
   
  After training, we feed corrupted patterns to the network. 
The corrupted patterns are generated by randomly reversing 
30% of the 256 image pixels. Successive responses of the 
output layer are recorded in Fig. 7. Fig. 7 shows the refined 
characters for the first five iterations. Most corrupted patterns 
will evolve to their stable patterns within five iterations. To 
our knowledge, this is the best performance among all existing 
methods.  
   
  This encoder exhausts the flexibility of all neuron’s weights 
to accomplish widely separated and isolated new 
representations of all patterns in mapped space. One can 
develop refined representations for patterns layer after layer or 
train a multilayer network backwardly to obtain such 
representations. This encoder also accomplishes an ideal MLP 
kernel for the SVM for two-class problem. 
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Fig. 3: Bottom green line plots the minimum Hamming 
distances for each of the 52 characters. Those minimum 
Hamming distances for coded representations are plotted 
above with different training parameters. 
 
 
 

 
Fig. 4: The maximum distance between each encoded 
representation and its most remote encoded representation 
among the rest 51 representations. 

Fig. 5: The averaged Hamming distances for the 52 
representations. 

 
 
 
 
 
 
 

       
 

    Fig. 6: The recurrent network 
 
 
 

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

120

130

140

Output  1

Output  2
Output  3

Output  4

Input

0 10 20 30 40 50 60

60

80

100

120

140

160

180

200

220

Output  1

Output  2
Output  3

Output  4

Input

0 10 20 30 40 50 60
0

50

100

150

Output  1

Output  2

Output  3

Output  4

Input

=   x'x'Mx'1 x'2

=   xxMx 1 x 2

=  yy Ny 1 y 2

feedback

11



 .  

 
Fig. 7: Evolutionary recall of noisy characters. Training 
characters are listed in the first column. The 30% corrupted 
characters are in the second column. The recalled characters 
for the first five iterations are in the rest five columns. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Finally, we briefly discuss the Erep algorithm. In the 
algorithm, the repellence energy Erep is applied only to those 
nearest neighbors along the border of different classes, Fig.8. 
These neighbors are included in circles in the figure. These 
neighbors are the most sensitive patterns for discrimination 
and are the major patterns that cause difficult errors, local 
minimums, during the BP training. The algorithm suggests 
that one can insert a fixed perceptron right in between the 
nearest neighbors in each circle as possible before any BP 
training. These fixed perceptrons can discriminate sensitive 
patterns and generate faithful representations for such 
neighbors without training. The insertion technique is similar 
to those in the Bi-perceptron algorithm with half strip. Or, one 
can operate the SVM for nearest neighbors circle after circle, 
Fig.8, to get the inserted perceptron.   

 
 
 
 
 

 
 
 
 
 
 

Fig. 8: Neighbors of different classes 
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