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Abstract—The use of Reinforcement learning (RL) in address-
ing a variety of engineering tasks has seen a lot of increase lately.
However, because RL policies are trained under specific environ-
mental conditions, their performance degrades when deployed
in environments with different environmental conditions. As a
result, several researchers have focused on developing schemes
aimed at minimizing this performance degradation and conse-
quently realizing RL agents that are capable of generalizing to
different environmental conditions. In this paper, we propose an
optimal re-parameterization scheme based on weighted averaging
to facilitate generalization in RL. In the proposed method, two
RL agents are trained on simulated environments with different
environmental or model parameters, and then covariance matrix
adaptation evolution strategies (CMA-ES) is used to determine
the optimal averaging weights to combine the two agents for a
test environment. We evaluate the performance of our method on
a set of popular RL locomotion environments and show that it
can significantly improve the generalization performance of RL
policies.

Index Terms—Sim-to-real Transfer, Reinforcement Learning,
Model Averaging, Covariance Matrix Adaptation Evolution
Strategies.

I. INTRODUCTION

Reinforcement learning has seen an increase in popularity
in recent years thanks to its ability to solve several decision
and control tasks in domains such as classical control [1],
[2], games [3]–[5], robotics [6] and transportation [7], [8]
etc. Generally, RL algorithms are aimed at finding policies
that maximize a measure of goodness or reward (formulated
according to the associated task) by interacting with a dynamic
environment. Specifically, the RL learning cycle involves an
agent or policy taking an action at at time t based on the
state of the environment st and the associated reward rt .
Consequently, the environment transitions to a new state st+1
and the process is repeated until a termination criterion is
reached [2].

Although satisfactory performance of RL agents or poli-
cies have been demonstrated on environments with the same
parameters as those they were trained on, these RL policies
tend to overfit to that particular environment leading to per-
formance degradation when deployed in environments with
slightly different parameters or conditions [9]. This limitation

severely restricts the practical deployment of RL in real-
world settings where generalization is very important due to
the highly dynamic nature of the environment. A common
technique proposed to improve generalization in RL is domain
randomization [10], [11] where agents are trained on environ-
ments with random variations in dynamics, visuals, etc. By
exposing the agent to varied conditions during training, the
goal is to learn more robust policies that generalize to different
environmental conditions. However, naively randomizing the
training domain often fails to produce sufficient generalization
gains. Furthermore, domain randomization strategies require
extensive hyperparameter tuning and can lead to unstable
training or make tasks excessively difficult.

In this work, we propose an optimal re-parameterization
scheme based on weighted averaging to facilitate generaliza-
tion in deep RL. Using CARL [12], a framework containing
a collection of well-known RL environments extended to
contextual RL problems and specifically designed to evaluate
generalization in RL, we train a couple of RL agents on
environments with very different environmental parameters
and then use covariance matrix adaptation evolution strat-
egy (CMAES) to determine the optimal re-parameterization
weights to combine these policies and create a new policy with
better generalization abilities. To evaluate the performance
of our method, experiments were performed on two popular
RL locomotion tasks namely, Ant and Half cheetah [12].
For training and testing, we generate three variants for each
of the environments with different environmental conditions,
by varying parameters such as parameters such as friction,
and Torso mass of the base environments. Consequently,
two RL agents based on PPO [13] were trained on two of
the environments, and consequently, a new agent is evolved
through the proposed optimal reparameterization scheme. In
the testing phase, all three models were evaluated on all three
variants for each of the RL tasks. Our experiments showed
that the policy based on the proposed scheme outperformed
all the base models on all of the environments.

The remainder of this paper is organized as follows. In
section II, a background on CMAES, weighted averaging, and
carl is provided. The proposed method is detailed in section III
while section IV presents the results and discussions. Finally,
the conclusions of this work are presented in Section V.979-8-3503-1458-8/23/$31.00 ©2023 IEEE
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II. BACKGROUND

A. CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) is a state-of-the-art stochastic optimization algorithm
developed to solve non-linear, and non-convex optimization
problems [14], [15]. CMA-ES belongs to the broader family
of Evolution Strategies (ES), which draw inspiration from
the principles of natural evolution for optimization [2], [16],
[17]. CMA-ES is designed to optimize continuous, real-valued
objective functions by iteratively exploring and adapting the
search space. The algorithm operates in a manner similar to
a natural evolutionary process, where candidate solutions (re-
ferred to as ”individuals” or ”parents”) are iteratively improved
over generations. The key components of CMA-ES include:

• Population Generation: CMA-ES maintains a popula-
tion of candidate solutions, represented as real valued
vectors in the search space. These vectors are often re-
ferred to as ”individuals” or ”parents,” and they represent
potential solutions to the optimization problem. Gener-
ally, CMA-ES employs a multivariate normal distribution
to generate new candidate solutions. The distribution is
characterized by a mean vector (representing the current
best solution) and a positive-definite covariance matrix
(representing the exploration directions in the search
space).

• Selection and Evaluation: During each iteration, the
individuals in the population are evaluated based on their
fitness, which corresponds to the value of the objec-
tive function at their respective locations in the search
space. The fitter individuals (usually known as elites)
are selected to form the parent population for the next
generation.

• Adaptation of Covariance Matrix: The crucial feature
of CMA-ES is its ability to adapt the covariance matrix
during the optimization process. The covariance matrix
is updated based on the covariance of the selected par-
ent population. This adaptation allows the algorithm to
adjust the exploration of the search space dynamically,
effectively dealing with ill-conditioned and anisotropic
objective functions.

• Mean Update: The mean vector of the multivariate nor-
mal distribution is updated to be closer to the promising
solutions found by the selected parents. This mechanism
biases the search towards more promising regions of the
search space.

These entire processes are repeated until a predefined ter-
mination criteria (usually the maximum number of function
evaluations or function vale tolerance) is reached.

B. Contextual RL

Contextual Reinforcement Learning (cRL) addresses the
issue of generalization in the RL setting by introducing dis-
tributions over multiple characteristics and properties of the
environment [12]. Consider an agent learning a policy in an
RL setting to pick a ball and put it in a cup. Generalization

of this policy would involve assessing whether the agent
can successfully pick up balls of different sizes, shapes, or
even if it can put the object into other objects with similar
physical properties to cups. The concept of cRL formalizes
this by defining varying factors, such as the size of the cup’s
handle or the height of the cup, as contexts that are sampled
from a distribution. Each context then creates a separate
Markov Decision Process (MDP), referred to as contextual
MDPs (cMDPs), which are essentially variations of the same
underlying MDP, differentiated by the changing contexts.

C. Model Averaging

Model averaging is a prominent ensemble technique within
the realm of machine learning, where the combined expertise
of multiple models, each of identical structures but trained
under varying conditions, is harnessed to create a new model
of superior performance [18]. The fundamental premise of this
approach revolves around the notion of capitalizing on the
diversifying effects induced by the disparate training condi-
tions, ultimately yielding a composite model that surpasses the
individual constituent models in its capacity for generalization
[19].

The essence of model averaging lies in the fusion of the
knowledge garnered from distinct models, all possessing anal-
ogous architectures but potentially divergent learned weights
due to divergent training circumstances. By calculating the
arithmetic mean of the weights of the participating models, the
resulting model inherits a more encompassing representation
of the underlying data distribution, effectively leveraging the
complementary strengths of its constituent counterparts.

III. PROPOSED CMA-ES BASED MODEL AVERAGING
SCHEME

The primary objective of the proposed approach is to en-
hance the generalization capabilities of Reinforcement Learn-
ing (RL) policies. To achieve this, we employ insights derived
from policies trained in contextual MDPs and leverage the
concept of model averaging to re-parameterize a new policy.
By doing so, we aim to create a more robust and adaptable
policy that can perform well in a wider range of situations.

The process involved in this approach can be delineated
into two main stages, each serving a crucial purpose in
achieving our overarching goal. The first stage is the training
stage, where we subject RL policies to train in environments
with different challenging and diverse parameters (contextual
MDPs). The challenging environments parameters are those
that affect generalization performance of vanilla RL algorithms
[20]. By exposing the policies to these extreme scenarios, they
are forced to adapt and learn intricate strategies to succeed in
each setting. This diversity in training environments fosters
the acquisition of specialized knowledge and skills by the
individual policies.

The second stage is the reparametrization stage, where we
employ weighted averaging to evolve a new policy based on
the policy parameters RL agents from stage 1. Specifically, this
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weighted averaging scheme helps to consolidate the knowl-
edge accumulated by the various policies during the training
phase. However the performance of the resulting model from
this stage depends on efficient selection of the averaging
weights. Therefore to find those weights, we formulate the
reparamterization task as an optimization problem where the
decision variables are the weights and the objective function
is the test contextual MDP. In order to solve the optimization
problem, we employ CMA-ES. This process results in the
creation of a collective model that combines the strengths
and expertise of each individual policy, thereby yielding a
more comprehensive and versatile representation of the RL
landscape.

πproposed = wiπi +wi+1πi+1...wi+N−1πi+N−1 (1)

where πi refers to the ith policy, wi refers to the weigth
assigned to the ith policy and N refers to the number of training
contextual MDPs. In the context of this work, we set N = 2.

IV. EXPERIMENTAL STUDY

This section details the experiments conducted in this study
to evaluate the performance of the proposed optimal reparam-
eterization scheme. First, we highlight the RL environments
(MDPs) employed and their characteristics. Second, we de-
scribe the experimental setup and evaluation metrics. Finally
the results from the experiments are presented and discussed.

A. RL locomotion environments

Two RL locomotion environments were studied, Half Chee-
tah and Ant. To create the contextual MDPs, the friction and
the torso masses were varied for both environments as well as
the actuator strength in the case of Half Cheetah.

• Half Cheetah: Half cheetah is a locomotion environment
where a two-dimensional entity comprising of 9 segments
(a fixed head and torso, front and back paws, front
and back thighs, front and back feet) connected by 8
joints aims to apply torque on its joints to move in
a forward direction at the maximum speed. A positive
reward is given for forward movement distance while a
negative reward penalized backward motion. A graphical
illustration of the Half Cheetah locomotion task is shown
in Fig. 1a.

• Ant: Ant is a three-dimensional robot entity comprised
of a central torso with four two-segment legs attached
to it whose goal is to move in a forward direction by
applying torque on its joints. A positive reward is given
for forward movement distance while a negative reward
penalized backward motion. A graphical illustration of
the Ant locomotion task is shown in Fig. 1b.

B. Experimental setup and evaluation metrics

The two aforementioned locomotion environments were
formalized based on OpenAI’s gym framework [21] using
the Mujoco physics engine [22]. The contextualization of the
MDPs were performed according to the CARL [12] python’s

(a) Half Cheetah (b) Ant

Fig. 1: Graphical illustration of the locomotion environments

framework.
The variations in the context for the MDPs were inspired by
[20] where they found environmental parameters ranges which
are challenging and impossible for agents trained on default
environmental parameters to solve. The variations applied to
realize the contextual MDPs were as follow:

• Friction: For both Half cheetah and Ant, the training
contexts’ friction was selected randomly in the range
[0.2,0.5]∪ [1.1,1.4] which is shown to be a challenging
range of friction value for half cheetah [20] and the testing
context’s was selected at random in the range [0.5,1.1]
which is a range which can be solved by an agent trained
on the default parameters.

• Torso Mass: Similarly, the torso masses were also
selected randomly within challenging range( [5,7.5] ∪
[12.5,15] ) and the testing context was set in a less
challenging range([7.5,12.5]) for both Half cheetah and
Ant.

• Actuator Strength: The actuator strength was only varied
for the half cheetah environment. For the training context,
the values were selected at random within the ranges
[100,200]∪ [400,500] while for the testing context it was
selected at random within the range [200,400]

In the first stage where the contextual MDPs are trained
using the vanilla RL framework, we employ the implementa-
tion of the PPO algorithm [13] provided by stable-baselines3
an open source reliable implementations of Reinforcement
Learning algorithms [23]. In order to ensure that the policies
learned from the contextual MDPs during the training stage
are well trained, we set the total timesteps for training the PPO
algorithm to 3×106. In the second stage, where CMA-ES is
used to evolve the weights to combine the policy parameters
from the training stage, we set the population size of CMA-ES
to 10 and the total number of generations was set to 100. In
terms of the objective function, mean episode rewards was
used where each episode comprises of maximum of 1000
timesteps. Consequently, the total number of timesteps during
the entire process is limited to 1×106.

All the experiments conducted in this work are carried out
using Python installed on a 64-bit ubuntu 22.04 PC, with a
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2.50GHz intel-i5 CPU and 16GB RAM.

C. Experimental results and discussions

1) Half Cheetah: Table I presents the results of the ex-
periments conducted based on the Half Cheetah locomotion
environment. Specifically, the mean rewards for the policies
trained based on the contextual MDPs as well as the resulting
policy from the proposed reparametrization scheme are pre-
sented. In order the demonstrate the generalization capabilities
of the agents, the table presents test results across all the three
contextual MDPs. From the results, it can be observed that the
proposed reparameterization scheme results in an agent that
outperforms the other agents when tested on all the contextual
MDPs of the Half Cheetah locomotion environment. Further-
more, the results demonstrate that the proposed method results
in a robust agent as the performance of the agent across all
the contextual MDPs is highly comparable if not equal.

TABLE I: Evaluation results on Halfcheetah Environment

Agent Training Env1 Training Env2 Testing Env

agent1 -958.1859131 -980.7937622 -934.630249
agent2 -1602.746216 -1609.807617 -1613.52002
avgeraged model 5646.800781 5602.361816 5718.705078

2) Ant: Table II presents the results of the experiments
conducted based on the Ant locomotion environment in terms
of the mean episodic rewards for the policies trained based on
the vanilla RL scheme (PPO) as well as that of the resulting
policy from the proposed reparametrization scheme. In order
the demonstrate the generalization capabilities of the agents,
the table presents test results across all the three contextual
MDPs. From the results, it can be observed that the proposed
reparameterization scheme results in an agent that outperforms
the other agents when tested on all the contextual MDPs of
the ant environment. Furthermore, the results demonstrate that
the proposed method is able to generalize well across all the
contextual MDPs as its performance is highly comparable for
all the contexts.

TABLE II: Evaluation results on Ant Environment

Agent Training Env1 Trainig Env2 Testing Env

agent1 468.9058228 498.521637 439.2935486
agent2 718.0932007 718.0866699 718.1958008
avgeraged model 1002.122498 1002.128296 1002.117432

V. CONCLUSION AND FUTURE WORKS

This paper proposed a novel optimal reparameterization
scheme based on weighted model averaging to improve the
generalization performance of reinforcement learning policies.
The experimental results on the Ant and Half Cheetah bench-
mark environments demonstrated that the proposed technique
can significantly enhance generalization capabilities compared
to models trained on a single context. Specifically, the evolved
”averaged” policy consistently achieved higher rewards across
both training and test MDPs compared to the individual

policies it comprised. The success of this method highlights
the potential of exposing agents to diverse training contexts
and recombining their learned representations to create more
robust policies. The weighting optimization through CMA-
ES proves to be an effective way to combine the knowledge
acquired by individual policies for generalization. Overall, this
work makes a valuable contribution by introducing a simple
yet effective model averaging approach to tackle the important
challenge of generalization in reinforcement learning. Future
works include combining an ensemble of more than two
agents to see if it leads to an improvement in the results and
evaluating the proposed solution on real-world robotics tasks
to see if the generalization abilities can extend to real-world
problems.
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