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Abstract—The ALICE detector at the CERN LHC is a large
and complex system that has employed system logging to keep
track of progress and detect any abnormal activity that may
occur. In this study, we propose a complete log-anomaly detection
framework to automatically detect anomalies, with an emphasis
on examining its scalability when applied to large datasets as
those typical of large high-energy physics experiments. Further-
more, we investigate different factors that may have an impact
on model performance through extensive tests on real-world
datasets, HDFS, and CERN Infologger. The insights gained from
this study will enhance the safety, efficiency, and reliability of
infrastructure operations at the ALICE facility.

Index Terms—ALICE, CERN, Anomaly Detection, Monitoring
system, Machine Learning, Convolutional Neural Network (CNN)

I. INTRODUCTION

CERN (The European Organization for Nuclear Research) is
the world’s largest organization for research in particle physics.
Over the years, significant experiments have been carried out
to exploit particle collisions at various accelerator complexes
and address a wide range of physics topics. Provided that
each experimental run is cost and time-intensive, it is essential
to monitor the detector-response systems, both manually (i.e.
human monitoring) and automatically (i.e. system logging),
and take prompt action if any issue emerges.

Log is commonly used for both system monitoring and
troubleshooting since it contains information about the system
runtime and activities. For large and complex systems, such
as CERN’s detectors, the amount of log messages generated
per experimental run is considerable, especially during a
system upgrade in which several modifications made to the
software are done. Due to this, an automatic approach to
troubleshooting or detecting system anomalies through log
messages, so-called log anomaly detection, is thus desirable.

In particular, log anomaly detection is a technique used
to discover unusual events in system log messages. Numer-
ous approaches have been proposed to detect log anomalies,
from traditional methods to recent advancements based on
deep learning. Nevertheless, deep learning has demonstrated
great potential in capturing intricate patterns and relationships

within sequential data, making it suitable for log analysis and
detection.

In this study, we present a deep learning framework based
on Convolutional Neural Networks for detecting anomalous
activity in log data generated by ALICE – the CERN ex-
periment that primarily focuses on exploring the physics
of interacting matter at extreme energy densities. We put
emphasis on investigating the scalability of the model when
provided with a large amount of data, and exploring the factors
that contribute to performance improvement. This study made
the following contributions:

• We present a complete framework for automatic log
anomaly detection, with a focus on examining its scala-
bility when applied to large datasets. The insights gained
will be particularly beneficial in improving the safety,
efficiency, and reliability of critical infrastructure opera-
tions at the ALICE facility.

• We extensively explored different hyperparameters that
are crucial in improving the model performance and
demonstrated their effects on the model.

• Extensive experiments were conducted on two real-world
datasets, HDFS and CERN Infologger. Results indicated
that size of dataset has a significant impact on the
hyperparameter settings.

II. LOG DATA AND ANALYSIS

Two datasets are used in this study, namely HDFS and In-
fologger. HDFS1 is a open-source data used by many research
works for algorithm testing [1, 2] . Yet, HDFS data represent
a less complex system compared to those from large data cen-
ters. Infologger, on the other hand, is a large complex dataset
from ALICE O2(Online-Offline) logging system in CERN,
collected across processes running on multiple machines in
each experimental run. The size of HDFS and Infologer are
2.2 GB and 10.7 GB, respectively. More details and examples
of both datasets are presented in TABLE I and II.

1https://zenodo.org/record/3227177
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Given that both HDFS and Infologger have the same prop-
erty, namely usage of session logs, a session is thus used in this
study as the unit to determine whether there exists an anomaly.
In other words, an entire session will be labeled as an anomaly
session when an abnormal event occurs. We generated session
logs by grouping the PID of log messages since PID is a
common feature of both datasets, as shown in TABLE II.
Furthermore, it can be noticed from the table that, although
the Infologger dataset has less sessions, the length of its log
messages on average is very large. In terms of complexity
and word variety, the Infologger dataset is more complex and
contains a dense bag of words compared to HDFS, as depicted
in Fig. 1.

(a) HDFS word cloud

(b) Infologger word cloud

Fig. 1. Dataset word cloud

III. LOG ANOMALY FRAMEWORK

This section presents the log anomaly framework, compris-
ing data preprocessing steps (i.e. log parsing, text encoding,
session windowing), and the proposed CNN-based model.

A. Log parsing

Log parsing is the process of analyzing and extracting
relevant information from log files. For anomaly detection,

log parsing alleviates the number of log messages by grouping
them into templates, thereby reducing the number of patterns
the model needs to learn as well as making the model
generalize better. This study utilized Drain [3] to discover and
extract templates from log messages. For instance, based on
the content column in TABLE I, a corresponding template
generated from Drain will contain a unique template id,
template, along with a separate list of parameters.

B. Text encoding

Text encoding transforms raw textual data into numerical
representations. EventTemplate in a parsed log (e.g. id <*>
client disconnected) is used as input. Then, data cleansing and
tokenization are applied to remove unnecessary information
(e.g. punctuation). We then created a dictionary from tokens,
where each token is indexed by its occurrence frequency.

C. Session windowing

After text encoding, session windowing is applied to input
data streams where the notion of sessions is relevant. It is a
technique used to group related events or data points within a
specific timeframe. Each window is defined with the process id
(PID); therefore, any event falling within the specified PID is
considered part of the same session. We note that log messages
are further cropped to ensure that they are all of the same
window size.

D. Proposed CNN-based Model

When applying CNNs to log anomaly detection, the log
data is typically treated as a time window, where each log
entry represents a data point in the sequence.

From Fig. 2, the incoming log keys sequence will feed
through the input layer. It keeps the log key sequence in
a specific shape before passing it to the embedding layer,
transforming into vector representation in latent space. Next,
stacked 1-dimensional CNN layers are applied using different
kernel sizes to capture various patterns and contexts from log
key sequences. The following layer is a Rectified Linear Unit
(ReLU), which is used as an activation function, followed by
max pooling to extract most representative features. Those
features are then merged via a concatenation layer, flattened,
and finally fed to the dense layer for classification. Softmax
activation is applied to compute probability scores indicating
whether the log key is normal or an anomaly.

TABLE I
EXAMPLE OF DATASET

HDFS dataset
LineId Date Time Pid Level Component Content

1 081109 203518 143 INFO dfs.DataNode$DataXceiver Receiving block blk_-1608999687919862906
src: /10.250.19.102:54106 dest: /10.250.19.102:50010

Infologger dataset

LineId timestamp pid hostname severity system username facility Content
1 1617193614.448 2298 alio2-cr1-hv-head01 I GUI gui Framework id 0 client disconnected
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TABLE II
DATASET DESCRIPTION (TOP: HDFS, BOTTOM: INFOLOGGER)

Name Description

Pid process id of application
Level severity (i.e. INFO, DEBUG, WARN, ERROR, FATAL)
Component part of the system that generates logs
Content log message information

pid process id of application
hostname host machine that run the application
severity severity (i.e. I, D, W, E, F)
system group of application (e.g. First Level Processor (FLP))
username unused (currently, same as system)
facility submodule or framework that runs under the system
Content log message information

TABLE III
NORMAL AND ANOMALY PARTITION

Dataset Max #
logs/sequence

Normal #
sessions

Anomaly #
sessions

Total #
sessions

HDFS 298 558,223
(97.07%)

16,838
(2.93%)

575,061
(100%)

Infologger 2,194,073 79,528
(99.52%)

387
(0.48%)

79,915
(100%)

IV. EXPERIMENTAL STUDY

This section describes details about the designed experi-
ments. Our goal is to evaluate the effect of hyperparameters
on the performance and the model scalability. Two datasets
were used – HDFS is the general one and Infologger is the
complex one. The datasets are split into training, validation,
and testing with fractions 60%, 20%, and 20%, respectively.

Input

Embedding

1st Conv1D nth Conv1D

Concatenation Layer

Fully Connected Layer (FC)

SoftMax Activation

Output

1st Conv1D nth Conv1D

1st Conv1D nth Conv1D

1st ReLU nth ReLU

1st MaxPooling nth MaxPooling

Fig. 2. Convolutional Neural Network (CNN) architecture

TABLE IV
HYPER-PARAMETERS SETTING OF EXPERIMENTS

No. Parameter Values

1. Window Size 10, 20, 30, 40, 50
2. Hidden Size 128, 256, 512, 768
3. Embedding Dimension 64, 128, 256, 512
4. Kernel Sizes (1, 3, 5), (2, 3, 4), (2, 4, 6),

(3, 5, 7), (4, 6, 8), (5, 7, 9)
5. No. of Convolutional layer 3
6. Dropout 0.2
7. Learning Rate 0.01

∗Default values are in bold and underlined.

A. Hyperparameters

TABLE IV lists all hyperparameters of our experiments.
Window size is the number of log messages that the model
considers at a time when making predictions. Hidden size is
the number of hidden units in the recurrent layer. Embedding
dimension refers to the size of the embedding vectors of
an input log message. Kernel sizes refer to sizes of the
convolutional kernels used in the CNN model. Dropout is
the probability of a neuron being dropped out during each
iteration. Learning rate is the step size by which model’s
parameters are updated during each iteration.

For each experiment, only one hyperparameter is varied and
others are fixed at their default settings. In this study, we vary
window size, hidden size, embedding dimension, and kernel
sizes. We discuss our observations for each of them in Section
V.

B. Evaluation Metrics

Metrics used for evaluation include Accuracy, Precision, Re-
call, F1-score, False Negative Rate (FNR), and False Positive
Rate (FPR). FNR is a misdetection rate, occurring when the
model lets an abnormal log event slip through undetected. FPR
is a false alarm, occurring when the model identifies normal
data as anomalies. All formulas are shown in Eq. 1-6.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− score =
2× Precision×Recall

Precision+Recall
(4)

FalsePositiveRate(FPR) =
FP

TN + FP
(5)

FalseNegativeRate(FNR) =
FN

TP + FN
(6)

where True Positive (TP) is the number of anomalous
sessions correctly detected by the model. True Negative (TN)
is the number of normal sessions correctly identified as nor-
mal. False Positive (FP) is the number of normal sessions
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Fig. 3. Hyperparameter tuning of convolutional-based model on HDFS dataset

mistakenly detected as anomalies. False Negative (FN) is
number of anomalous sessions misidentified as normal.

V. RESULTS AND DISCUSSION

A. Hyperparameter effects for HDFS dataset

HDFS, a general dataset, could serve as a baseline for
comparison with Infologger. In what follows, we discuss
results obtained for each hyperparameter.

TABLE V
HDFS EXPERIMENTAL RESULTS

Hyperparameters Accuracy Precision Recall F1 FNR FPR

window_size 10 0.982 0.926 0.458 0.611 0.542 0.001
20 0.988 0.973 0.798 0.876 0.203 0.001
30 0.997 0.987 0.951 0.969 0.049 0.0006
40 0.998 0.980 0.963 0.972 0.037 0.0006
50 0.998 0.995 0.942 0.967 0.058 0.0002

hidden_size 128 0.980 0.964 0.374 0.537 0.627 0.0004
256 0.971 1 0.072 0.134 0.928 0
512 0.970 0.981 0.039 0.074 0.961 0
768 0.982 0.902 0.471 0.618 0.529 0.002

embedding_dim 64 0.970 0.974 0.037 0.070 0.963 0
128 0.982 0.935 0.454 0.610 0.547 0.001
256 0.982 0.919 0.464 0.616 0.536 0.001
512 0.970 0.036 0.023 0.027 0 0

kernel_sizes 1, 3, 5 0.970 0.981 0.039 0.074 0.961 0
2, 3, 4 0.970 0.974 0.037 0.070 0.963 0
2, 4, 6 0.970 0.974 0.037 0.070 0.963 0
3, 5, 7 0.982 0.923 0.461 0.614 0.539 0.001
4, 6, 8 0.982 0.930 0.459 0.614 0.541 0.001
5, 7, 9 0.982 0.894 0.473 0.618 0.527 0.002

a) Window Size: Fig. 3 shows the performance improve-
ment across all metrics when window size increases, reaching
a peak at w=40 with F1-score of 0.972. We also observed
that some metric starts to drop slightly when w=50, indicating
that excessive features from input can start to harm the model
by giving irrelevant information when increasing the window
size.

b) Hidden Size: different hidden sizes allow the model
to learn different representations and patterns in the data.
At h=128, the model shows a fair result as some relevant
information in an input sequence could be captured. However,
increasing hidden size may not improve the model as it ignores
anomalous patterns and focuses only on normal patterns. After

h=512, the model has demonstrated to achieve the best F1-
score of 0.618, which may signal that the model captures some
interesting pattern or the presence of overfitting effects that
could emerge in a small dataset. from a small dataset.

c) Embedding Dimension: Fig. 3 shows that moderate
output values could be achieved at h=128 and 256, indicating
that some specific dimension fits well with the dataset. We
observed that the best F1-score of 0.616 was obtained for
h=256. However, a lower dimension demonstrated to give poor
results as it does not contain adequate information.

d) Kernel Sizes: The results show that the model cannot
capture patterns with lower kernel sizes. This suggests that
larger kernels are more suited for capturing broader patterns
in input sequences. We also observed that recall and F1-score
improve when kernel sizes increase in complexity. The best
F1-score (0.618) was obtained for k=(5, 7, 9), emphasizing that
wider filters can capture more patterns and thus, with a bigger
picture, the model can better comprehend input sequences.

B. Hyperparameter effects for Infologger dataset

This section discusses the effect of hyperparameter varia-
tions based on Infologger, which is a larger and more complex
dataset.

TABLE VI
INFOLOGGER EXPERIMENTAL RESULTS

Hyperparameters Accuracy Precision Recall F1 FNR FPR

window_size 10 0.971 0.715 0.831 0.768 0.170 0.020
20 0.963 0.640 0.846 0.729 0.154 0.030
30 0.965 0.657 0.863 0.746 0.137 0.029
40 0.961 0.629 0.873 0.731 0.127 0.033
50 0.961 0.633 0.886 0.738 0.114 0.034

hidden_size 128 0.417 0.089 0.9996 0.164 0.0004 0.619
256 0.970 0.700 0.833 0.760 0.167 0.022
512 0.970 0.703 0.834 0.762 0.166 0.021
768 0.974 0.740 0.828 0.781 0.172 0.018

embedding_dim 64 0.984 0.897 0.811 0.851 0.189 0.006
128 0.972 0.726 0.829 0.774 0.171 0.019
256 0.970 0.692 0.834 0.756 0.166 0.023
512 0.980 0.828 0.816 0.821 0.184 0.010

kernel_sizes 1, 3, 5 0.969 0.687 0.832 0.752 0.168 0.023
2, 3, 4 0.983 0.881 0.812 0.845 0.188 0.007
2, 4, 6 0.970 0.703 0.832 0.762 0.168 0.021
3, 5, 7 0.965 0.650 0.831 0.729 0.169 0.027
4, 6, 8 0.975 0.757 0.822 0.788 0.178 0.016
5, 7, 9 0.972 0.716 0.832 0.769 0.169 0.020
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Fig. 4. Hyperparameter tuning of convolutional-based model on Infologger dataset

a) Window Size: Fig. 4 shows that F1-score and precision
decrease as window size increases, indicating that too much
context might introduce noises. Recall rises when the window
size is larger, reflecting coverage of relevant log messages.
Besides, TABLE VI shows that the highest F1-score (0.768)
was achieved at w=10, while at w=50, FNR dropped to 0.114
because anomalies may span multiple log entries and a larger
window helps the model to detect those patterns.

b) Hidden Size: a drastic change was observed at h=128,
where F1-score and precision drop to almost zero in Fig. 4.
This could be a sign of lacking input information when the
hidden size is too small. It could also be noticed that starting
from h=256, all metrics start to give better competitive results.
At h=768, the model achieves the highest F1-score (0.781),
demonstrating that a larger hidden size helps improving the
model’s performance, especially in terms of precision. With a
smaller hidden size of h=256, FNR reduces at 0.167 which
could be considered the best value, given that the case of
h=128 yields the lowest accuracy.

c) Embedding Dimension: on average, higher recall and
lower FNR were achieved with moderate embedding dimen-
sions, i.e. h=128 and 256, indicating that an appropriate
embedding dimension helps the model to focus only on key
features of inputs. Nevertheless, the related F1-score and
precision are lower as displayed in Fig. 4, indicating a tradeoff
between model complexity and the amount of fine-grained
information being captured. In addition, using d=64 achieves
the highest F1-score (0.851) which is comparable to d=512.

d) Kernel Sizes: different kernel sizes capture different
patterns in the log data. Fig. 4 shows that precision and F1-
score are highest at k = (2, 3, 4), followed by k = (4, 6,
8) as it is double in size. The results reported in TABLE VI
show that using kernel sizes 2, 3, and 4 leads to the best F1-
score (0.845), indicating that these particular kernel sizes are
effective in capturing important patterns in the log sequences.

C. Model performance across different datasets

The outcome indicates that the model is capable of handling
large data relatively well, yielding linear trend results across
all window sizes and all metrics. With a smaller dataset HDFS,
the model also demonstrates the same trend for precision;

however, its recall and F1-score clearly indicate that larger
window sizes are more helpful for learning. To summarize,
the model is limited to small window sizes for a small dataset
HDFS, in contrast to Infologger where the trend appears to be
increasing as the window size grows.

Additionally, the model yielded good results on HDFS with
low and high numbers of hidden layers, whereas better results
were obtained with large hidden size for Infologger. This em-
phasizes that size and complexity of the dataset directly affect
hyperparameter settings. We further observed that a medium-
sized embedding dimension is more suitable for HDFS, while
low and high dimensions are more well-suited for Infologger.
For the kernel sizes, the model yielded competitive results
for Infologger in general. With HDFS, however, the model
obtained good results at more complex kernel size patterns.

It is essential to consider specific requirements and con-
straints when selecting hyperparameters; minimizing FNR
helps avoiding missing anomalies, while minimizing FPR
helps reducing false alarms in the system. Since our goal is to
capture anomalies, recall and FNR are the main indicators
to identify when the model poorly performs. Finally, both
datasets show that larger window sizes and hidden sizes gen-
erally lead to better performance, implying that the model can
benefit from more context and learning capacity as the dataset
size increases. This additionally suggests that the model has
the potential to scale effectively to handle larger datasets.

VI. RELATED WORKS

Methods for log anomaly detection have progressed from
statistical-based approach [4], traditional machine learning [5],
to deep learning [6]. The proven success of deep learning has
also led to an increase in various other text-based research and
applications [7–10]. Unlike statistical methods, deep learning
techniques like CNNs have shown superior capabilities in
extracting intricate patterns and dependencies from sequential
data. Numerous research studies have shown that CNN can
capture relationships among events in system logs relatively
well. The study by Lu et al. [11] is one of the first to apply
CNN for anomaly detection in log events. The results from the
proposed method reveal that the model could outperform sev-
eral other competitive approaches. Likewise, a study reported
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in [12] proposed a comparative study of different architectures,
the results of which showed that CNN could achieve the best
outcome. Apart from CNN applications, RNN and its variation
such as LSTM have also been used in several works [13, 14].
Nevertheless, hyperparameter settings for the experiment was
not extensively studied nor discussed in these previous works.
Regarding the log datasets, Loghub [1] provides a collection
of system logs (e.g. BGL, Thunderbird, and HDFS) which are
freely accessible for log analytics research.

VII. CONCLUSION

This study presents a framework for log anomaly detection
using convolutional neural networks. By testing on different
data sizes, our findings show that the scalability of CNN is
possible for a large and complex dataset. The experimental
results also give valuable insights into effects of different
hyperparameters. In other words, by carefully selecting hy-
perparameter values while also taking into account tradeoffs
in evaluation metrics, we can create a reliable model that
practically works for different size and complexity of logging
systems such as the ALICE O2 facility at CERN.
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