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Abstract—In this paper, we propose some new binary 5-
sequential recovery Locally Repairable Codes (5-seq LRCs) with
availability 2 based on Golomb rulers and some well-known
technique of generating the parity check matrix for the QC-
LDPC codes. The proposed 5-seq LRCs can repair up to 5 erased
symbols sequentially within 3 repair time. It can be viewed as an
intersection of two LRCs without availability and its code rate
is optimal for some cases.

I. INTRODUCTION

To stably store big data in distributed storage systems
(DSSs) and increase reliability, locally repairable codes
(LRCs) that recover a single erasure symbol with only small
number of nodes have been proposed by Gopalan et. al. [6].
The locally repairable code of length n, dimension k and local-
ity r is denoted as an (n, k, r)-LRC. An important parameter
for LRCs is the locality r which is the minimum number of
symbols in the codeword required to repair a single erasure
symbol [6]. If each symbol has locality at most r, then the
code is said to have the locality r.

Recent topic of the research is LRCs which can repair
multiple erased nodes. Depending on the repair process, such
LRCs are divided into two different classes: parallel recovery
LRCs and sequential recovery LRCs or seq-LRCs. There are
various types of parallel recovery LRCs [10]–[13].

In this paper, we focus on sequential recovery LRCs
with availability t. Let C be an (n, k, r)-LRC and c =
(c1, c2, ..., cn) ∈ C. Then C is said to have locality r and
availability t if, for each i ∈ {1, 2, ..., n}, there exist at
least t pairwise disjoint repair sets R1(i), R2(i), ..., Rt(i) ⊆
{1, 2, ..., n} \ i, such that for 1 ≤ j ≤ t, (i) |Rj(i)| ≤ r,
(ii) for each j = 1, 2, ..., t, ci is a linear combination of cl
for l ∈ Rj(i). The main idea of having the availability t
is that one can repair either an erasure in t different ways
or t erasures in parallel. Some bounds and constructions for
LRCs with availability t have been studied in [11], [12].
Recently, an intersection of two LRCs with disjoint repair
groups was analysed and a construction was proposed for those
intersections with availability 2 [3]. We will recall the main
result of [3] as Known Fact 3 in Preliminaries.

The sequential recovery LRCs have been studied in [1], [3],
[10]. An u-sequential recovery (u-seq) LRC [10] can repair up
to u erased symbols of a codeword in some sequential order
(ci1 , ci2 , ..., ciu). The key point is that some repair sets of

the later erasures may contain some earlier repaired symbols.
Prakash et. al. [10] proposed the graph-based construction and
rate bound for 2-seq LRCs. A length bound for binary 3-seq
LRCs has been proved and mentioned in [1]. In [2], the rate
bound for u-seq LRCs over Fq was proved as follows: for
r ≥ 3, if u is odd and σ = ⌊u−1

2 ⌋,

k

n
≤ rσ+1

rσ+1 + 2
∑σ

i=1 r
i + (u− 2σ)

. (1)

Some connections between LRCs for multiple erasures
and regular LDPC codes were proposed [7], [8]. In [7], it
was mentioned that the 4-cycle free regular LDPC code can
be an LRC whose availability is the column weight of the
corresponding parity check matrix. In [8], it was proved that
a linear block code defined by a parity check matrix H whose
girth is 2(u + 1) and whose row weight is at most r + 1
and column weight is at least 2 becomes an u-seq LRC with
locality r. This is recalled as Known Fact 2 in Preliminaries.

In this paper, we propose some new 5-seq LRCs with
availability 2 based on Golomb rulers and some well-known
technique of generating the parity check matrix for the QC-
LDPC codes. The proposed 5-seq LRCs can repair up to 5
erased symbols sequentially within 3 repair time. It can be
viewed as an intersection of two LRCs without availability
and its code rate is optimal for some cases.

In Section II, we recall three Known Facts from others. In
Section III, we design the binary 5-seq LRCs with availability
2 based on Golomb ruler and show that they are rate optimal
for some cases. Section IV concludes the paper with some
concluding remarks.

II. PRELIMINARIES

We will fix here two integers s and m with 2 ≤ s ≤ m
throughout this paper. As a scheme for generating a parity
check matrix for QC-LDPC codes, a construction based on
the exponent matrix was proposed in [5]. In this paper, we
will follow their proposed universal scheme of generating the
t× s exponent matrix E = [e(i, j)] using multiplication table,
and then determining the parity check matrix. The parity check
matrix H = [He(i,j)] is obtained by substituting e(i, j)-shifted
circular permutation matrix (CPM) for the position (i, j) of E,
for all i, j.
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Known Fact 1: [5], [9]
1) The non-existence condition of a 2c-cycle in the Tanner

graph representation of matrix H defined by substituting
some CPMs to (i, j) position of an exponent matrix E =
[e(i, j)] is that

c−1∑
l=0

(e(il, jl)− e(il, jl+1)) ̸≡ 0 (mod m) (2)

for all i0, i1, ..., ic−1 and j0, j1, ..., jc = j0 such that il ̸=
il+1 and jl ̸= jl+1 for 0 ≤ l < c.

2) When the exponent matrix E above has only 2 rows, the
girth in H must be a multiple of 4.

We will say with some abuse of notation that the code
defined by H has girth g (or simply, H has girth g) when
the Tanner graph of H has girth g.

A set of integers {g1, g2, ..., gs} with 0 ≤ g1 < g2 < · · · <
gs is called a Golomb ruler if the differences gj−gi for i < j,
are all distinct [4]. A Golomb ruler with s elements is called
an s-mark Golomb ruler. The length of the Golomb ruler is
equal to the difference gs − g1. The optimal s-mark Golomb
ruler is the smallest possible Golomb ruler when the number
of marks is s. In this paper, we set g1 = 0 for convenience.
If {g1, g2, ..., gs} is a Golomb ruler, then for any integer x,
{x+g1, x+g2, ..., x+gs} and {x ·g1, x ·g2, ..., x ·gs} are also
Golomb rulers. These are called Translation and Multiplication
property, respectively.

In [9], the parity check matrix H for the QC-LDPC code
was generated by applying the Golomb ruler based on the
scheme of [5]. The parity check matrix H generated by the
scheme [5], [9] has the column weight of at least 2 and row
weight of s. Therefore, it can be analyzed as the parity check
matrix H of sequential LRC in the next Known Fact. Since
a linear block code defined by such an H can have a girth
of up to 12 [5], it is a sequentially recoverable LRC up to 5
erasures with at most ⌈5/2⌉ = 3 repair time according to the
following Known Fact if its girth is indeed 12.

Known Fact 2: [8]
1) A linear block code is a u-seq LRC with locality r if its

parity check matrix satisfies the following:
(i) the girth is 2(u+ 1).

(ii) the column weight is at least 2, and
(iii) the row weight is at most r + 1.

2) The repair time of u-seq LRC defined above is at most
⌈u/2⌉.

In fact, in the parity check matrix H generated based on
1× s exponent matrix, the repair groups corresponding to all
the rows of H are pairwise disjoint, and the union of their
column indices becomes {1, 2, ..., n}. Therefore, the matrix
H based on the 2× s exponent matrix has two disjoint repair
groups and can be applied to the following Known Fact 3.

Known Fact 3: [3]
1) Given two parity check matrices H1 and H2 of the same

size m × (r + 1)m for two LRCs with disjoint repair
groups and constant repair group size r + 1 and with
m ≥ r + 1, the linear code C (which is the intersection
of two constituent codes) with the parity check matrix

H =

(
H1

H2

)
(3)

of size 2m×(r+1)m will have availability 2 if and only
if

|supp(h1,i) ∩ supp(h2,j)| ≤ 1†, for all i, j, (4)

where h1,i and h2,j are i-th row of H1 and j-th row of
H2, respectively.

2) If the LRC with the parity check matrix H in (3) has
availability 2, then this code is a 3-seq LRC and

rank(H) ≥ 2m−
⌊

m

r + 1

⌋
.

Therefore its dimension k is upper bounded by

k ≤ (r − 1)m+

⌊
m

r + 1

⌋
. (5)

III. 5-SEQ LRCS BASED ON GOLOMB RULERS

In Known Fact 3, the LRC having H in (3) as a parity check
matrix becomes a 3-seq LRC if and only if the condition (4) is
satisfied. Furthermore, if H1 and H2 are carefully designed in
(3), the resulting code can be a 5-seq LRC, as in the following
Theorem.

Theorem 1: Let {g1, g2, ..., gs} with 0 ≤ g1 < g2 < · · · <
gs be an s-mark Golomb ruler and D = {d1, d2, ..., d(s2)} be
the set of all possible differences gj − gi for i < j. Let m
be a positive integer greater than gs such that the following
condition is satisfied:

di + dj ̸≡ 0 (mod m)
for all i, j not necessarily distinct. (6)

If H = [He(i,j)] is the binary matrix with e(i, j)-shifted
CPM of the size m substituted for the position (i, j) of E for
all i, j, where E = [e(i, j)] is an 2× s exponent matrix given
as

E =

(
c c · · · c

g1 g2 · · · gs

)
, (7)

for an integer c ≥ 0, then the linear code with H as the parity
check matrix is a 5-seq (n, k, r)-LRC with availability t = 2
where n = sm, (s − 2)m + 1 ≤ k ≤ (s − 2)m + ⌊m

s ⌋ and
r = s− 1. The repair time of this code is at most 3.

Example 1: Take the value c = 2 and a 3-mark Golomb
ruler {0, 1, 3} in Theorem 1. Since D = {1, 2, 3}, all possible
sums of any two elements are {2, 3, 4, 5, 6} without any repeat.

†In [3], the condition (4) was written with equality, which was a simple
typo.
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TABLE I
EXAMPLES OF VARIOUS OPTIMAL 5-SEQ LRCS FROM Theorem 1 USING OPTIMAL GOLOMB RULERS

s
optimal

min m n k code rate
rate bound (1)

2gs + 1 ≥ min m
Golomb ruler for u = 5

4 0, 1, 4, 6 13 52 27 0.519 0.519 13 = min m

5 0, 2, 7, 8, 11 21 105 64 0.610 0.610 23 > min m

6
0, 1, 4, 10, 12, 17

31 186 125 0.672 0.672 35 > min m
0, 1, 8, 11, 13, 17

7
0, 2, 3, 10, 16, 21, 25

49 343 246 0.717 0.717 51 > min m
0, 2, 7, 13, 21, 22, 25

8 0, 1, 4, 9, 15, 22, 32, 34 69 552 415 0.752 0.752 69 = min m

9 0, 1, 5, 12, 25, 27, 35, 41, 44 89 801 624 0.779 0.779 89 = min m

TABLE II
EXAMPLES OF VARIOUS 5-SEQ LRCS FROM Theorem 1 USING NON-OPTIMAL GOLOMB RULERS

s
non-optimal

min m n k code rate
rate bound (1)

2gs + 1
Golomb ruler for u = 5

4 0, 1, 4, 9 15 60 31 0.517 0.519 19

5 0, 2, 7, 8, 17 28 140 85 0.607 0.610 35

6
0, 1, 4, 10, 12, 25 41 246 165 0.671

0.672
51

0, 1, 8, 11, 13, 27 44 264 177 0.670 55

7
0, 2, 3, 10, 16, 21, 43 69 483 346 0.716

0.717
87

0, 2, 7, 13, 21, 22, 45 71 497 356 0.716 91

8 0, 1, 4, 9, 15, 22, 32, 65 90 720 541 0.751 0.752 131

9 0, 1, 5, 12, 25, 27, 35, 41, 83 115 1035 806 0.778 0.779 167

We choose m = 7 that satisfies the condition (6). Then H
becomes

H =


I(2)I(2)I(2)

I(0)I(1)I(3)


=




0000010 0000010 0000010
0000001 0000001 0000001
1000000 1000000 1000000
0100000 0100000 0100000
0010000 0010000 0010000
0001000 0001000 0001000
0000100 0000100 0000100
1000000 0000001 0000100
0100000 1000000 0000010
0010000 0100000 0000001
0001000 0010000 1000000
0000100 0001000 0100000
0000010 0000100 0010000
0000001 0000010 0001000




According to Theorem 1, the linear code with H in above
is a 5-seq (n = 27, k = 10, r = 2, t = 2) LRC.

We are now able to classify, for a given Golomb ruler, some
ranges of m, to satisfy the condition (6) in Theorem 1.

Theorem 2: Let {g1, g2, ..., gs} with 0 ≤ g1 < g2 < · · · <
gs be an s-mark Golomb ruler and D = {d1, d2, ..., d(s2)} be
the set of all possible differences gj−gi for i < j. If m > 2gs,
then the condition (6) in Theorem 1 is satisfied. If m = 2gs,

then the condition is never satisfied. If gs < m < 2gs, then
an individual computer check is required for the condition.

Theorem 2 classifies, for a given Golomb ruler, some ranges
of m, to satisfy the condition (6) in Theorem 1. Tables I and II
show the smallest possible m and the resulting code rate when
applying the given optimal and non-optimal Golomb rulers to
the construction of Theorem 1, respectively. In these tables,
the min m is the smallest m that satisfies the condition (6)
in Theorem 1. An u-seq LRC is said to be rate optimal if (1)
holds with equality. As shown in Table I, the code constructed
by Theorem 1 using optimal Golomb rulers is optimal in the
sense of achieving the bound in (1). On the other hand, Table
II shows that the code constructed using those non-optimal
Golomb rulers could be non-optimal, but it is very close to
the optimality. Table III shows the code rates for various m
including the min m. As m increases, the code rate gradually
decreases, and hence becomes away from the optimality. Note
the case of s = 5 in Table III. The min m turns out to be
21 < 2gs. The next value m = 22 = 2gs is impossible to use
by Theorem 2.

Remark 1: As in Tables I and II, the min m can be less
than or equal to 2gs + 1. We note that the min m is equal to
2gs+1 for 4-,8-, and 9-mark optimal Golomb rulers as shown
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TABLE III
EXAMPLES OF VARIOUS 5-SEQ LRCS FROM Theorem 1 USING OPTIMAL GOLOMB RULERS WHEN NOT MINIMUM M

s
optimal

m n k code rate
rate bound (1)

2gs + 1
Golomb ruler for u = 5

4 0, 1, 4, 6

13 52 27 0.519

0.519 13

14 56 29 0.518

15 60 31 0.517

16 64 33 0.516

17 68 35 0.515

5 0, 2, 7, 8, 11

21 105 64 0.610

0.610 23

23 115 70 0.609

24 120 73 0.608

25 125 76 0.608

26 130 79 0.607

in Table I. That is, for these Golomb rulers, all the values of
m < 2gs do not satisfy the condition (6) in Theorem 1. On
the other hand, for 5-,6-, and 7-mark optimal Golomb rulers,
2gs+1 > min m. It would be interesting to characterize those
s-mark Golomb rulers for which the min m is exactly 2gs+1.

When m does not satisfy the condition (6) in Theorem 1,
the resulting code is a 3-seq LRC and 5-seq repair is not
guaranteed. The following example shows a case where the
resulting code is a 3-seq LRC but not a 5-seq LRC.

Example 2: Take the value c = 3 and a 3-mark Golomb
ruler {0, 1, 4} in Theorem 1. Since D = {1, 3, 4}, the possible
sums of any two elements in D are distinct and they belong
to {2, 4, 5, 6, 7, 8}. We choose m = 5 = 1+ 4 which does not
satisfy the condition (6). Then the matrices E and H become:

E =

(
3 3 3
0 1 4

)
, H =

(
I(3) I(3) I(3)

I(0) I(1) I(4)

)

Since m does not satisfy condition (6), the resulting code is a
3-seq LRC but not a 5-seq LRC. If c1, c2, c3, c6 and c13 are
erased symbols, then sequential repair is impossible in any
order.

IV. CONCLUDING REMARKS

In this paper, we propose some new 5-seq LRCs with
availability t = 2 based on Golomb rulers and some well-
known technique of generating the parity check matrix for
the QC-LDPC codes. The proposed 5-seq LRCs can be
viewed as an intersection of two LRCs with disjoint repair
groups without availability and can repair 5 erased symbols
sequentially within 3 repair time. The code rate of the resulting
codes using the optimal Golomb rulers in Table I turns out to
be optimal. It is an open problem to characterize for which
Golomb rulers the resulting code becomes rate-optimal.
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