
A System for Constructing Spanning Trees in
Graph Networks that Utilize Integer Linear

Programming to Enhance Link Fault Tolerances
Hieu Tran The, Kosuke Fujita, and Nattapong Kitsuwan

Department of Computer and Network Engineering
The University of Electro-Communications, Tokyo, Japan

Abstract—In this paper, we formulate to optimize the problem
related to network failure using the integer linear programming
(ILP) method. We aim to minimize the number of spanning trees
needed to protect the network in case of link and/or link-node
failure. Compared to the traditional approach of constructing
spanning trees using heuristic algorithms, our method has suc-
cessfully reduced the number of trees required for node or link-
node failure protection by up to 50%. Reducing the number of
spanning trees saves memory requirements for the network route
and simplifies network configuration.

Index Terms—Network protection, integer linear program-
ming, spanning trees, link failure, reducing memory.

I. INTRODUCTION

In the contemporary era of highly interconnected networks,
failures can have significant repercussions for both individuals
and organizations. Consequently, it is imperative to establish
robust and resilient networks capable of withstanding a wide
range of failures. Numerous techniques have been proposed
to promptly detect and mitigate network failures as they arise.
One such technique is the open shortest path first (OSPF)
protocol [7], which relies on link-state routing. OSPF can iden-
tify link failures, acquire knowledge of network topology, and
adapt to new topologies. However, there are instances where
OSPF’s recovery time may exceed one second or even more,
rendering it potentially inadequate for certain applications.

An alternative approach is P4Resilience [8], which combines
the principles of software-defined networking (SDN) with
programmable data planes, utilizing P4. P4Resilience em-
ploys packet headers to encapsulate backup path information,
streamlining failure recovery. It also implements a loop-free
backup path algorithm that enhances resilience against multi-
link failures. Nonetheless, it is important to note that the
addition of headers to packets could potentially lead to a
reduction in network performance, and the deployment of P4
switches might result in increased network costs.

Moreover, there exists a solution that overcomes the disad-
vantages of the above-mentioned options. This solution has a
fast recovery time in case of link failure and eliminates the
requirement of supplementary hardware devices and packet
headers, and it is called a multi-VLAN-based approach. In the

Identify applicable funding agency here. If none, delete this.

multi-VLAN-based approaches, failure recovery is achieved
by switching the traffic affected by a failure to a backup
VLAN tree to bypass the failure device. The backup VLANs
are preconfigured from the spanning tree and stored in each
switch. The failover time is significantly reduced compared to
a traditional ethernet network because each switch performs
failure recovery based on local decisions [6]. Figure 1 depicts
an example of VLAN based protection scheme. In this exam-
ple, VLAN 1 is the working VLAN, and VLAN 2 is used to
protect link (5, 8). In the normal state, node 8 uses link (5, 8)
to deliver frames to the destination nodes 1, 2, and 3. As link
(5, 8) fails, node 8 uses VLAN 2 to send frames to avoid using
the failure link.

Fig. 1. Example of VLAN-based protection scheme

We need to build a set of spanning trees to use a multi-
VLAN-based approach. Traditional methods for constructing
spanning trees use heuristic algorithms, such as the one
presented in [4]. However, these methods may not be optimal
regarding the number of spanning trees and implementing
them constrained nodes and links in a specific order, which
can lead to increased memory consumption and routing com-
plexity.

In this paper, we formulate the failure problem in the
network as an integer linear programming (ILP). Specifically,

324979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

our goal is to minimize the number of spanning trees needed
to protect the network in the event of link or/and node failure.
Our method has successfully reduced the number of spanning
trees required for nodes or link-node failure by up to 50%
in JPN25 [1] and NSFNet [9] network while maintaining
protection against link or/and node failure. This reduction not
only reduces memory requirements for network routing but
also simplifies the network and makes it more manageable.

II. PROBLEM STATEMENT

Spanning trees are often used to protect against link and/or
node failures in distributed networks, as described in [2], [3],
or centralized networks [5]. The number of potential spanning
trees that can be established in the network to ensure network
protection ranges from 2 → n(n−2), where n represents the
number of nodes in the network. In the case of a large network,
constructing a set of spanning can result in an excessive
number of trees, which can lead to increased memory usage
for VLAN storage, adding complexity and cost charges to
the network configuration. Therefore, our goal is to minimize
the number of spanning trees needed to be created while
maintaining protection against any possible link or/and node
failures in the network.

III. ILP FOR THE FORMULA TO OPTIMIZE THE PROBLEM

To use ILP for the formula to optimize the problem, the
parameters are defined in the table (I):

TABLE I
DESCRIPTION OF PARAMETERS AND VARIABLES

V represents the set of nodes (routers or switches) in the network
E represents the set of links in the network
T represents the set of spanning trees to construct
r root node in spanning tree r ∈ V
M large enough value
ε small enough value
kt equal 1 if there is a spanning tree t ∈ T , 0 otherwise
xt
ij number of lower node under link (i, j) ∈ E in spanning tree t ∈ T ,

1 ≤ xt
ij ≤ |V | − 1

ytij equal to 1 if link (i, j) ∈ E of the spanning tree t ∈ T exists, 0
otherwise

wt
i equal to 1 if node i ∈ V is the leaf of the spanning tree t, 0

otherwise
zti degree of node i ∈ V in tree t ∈ T , 1 ≤ zti ≤ |V |− 1 (i ∈ V)

The objective function is to minimize the number of span-
ning trees and is defined as Eq. (1) as follows:

min
∑
t∈T

kt (1)

A. Link failure

Link failure constraint to enhance link fault tolerance. The
link failure constraints require that every link in the graph
belongs to at least one of the set of spanning trees. If a
spanning tree satisfies a link constraint, and more than one
tree does so, any link failures on the graph will be covered by

at least one of the spanning trees. First, we apply constraints
for the number of links in spanning tree conditions.

∑
(i,j)∈ E

ytij = kt (|V | − 1), ∀ t ∈ T (2)

Equation (2) expresses that the sum of links in the spanning
tree is |V | − 1. Next, we consider the following conditions to
describe the flow conditions in the network.∑

(i,j)∈ E

xt
ij ≤ kt M, ∀ t ∈ T (3)

Equation (3) limits the total flow through tree t ∈ T by a large
constant number M . Next, we show the constraints on which
links are in the spanning tree.

xt
ij ≤ ytij (|V | − 1), ∀ (i, j) ∈ E, t ∈ T (4)

Equation (4) these constraints for removing the loop in the
spanning tree and ensures that if link (i, j) is included in tree
t ∈ T , the number of a lower node of each link in the spanning
tree is always less than |V |−1. The following are two formulas
Eqs. (5) and (6). Constraints of flow between node root and
any nodes in the network. More detailed description, for any
link pairs (r, i) of node r, i ∈ V where a path exists between
r and i with direction from r to i.∑

(r,j)∈E

xt
rj −

∑
(j,r)∈E

xt
jr = (|V | − 1)kt, ∀t ∈ T (5)

∑
(i,j)∈E

xt
ij −

∑
(j,i)∈E

xt
ji = −kt, ∀t ∈ T, ∀i ∈ V, i ̸= r (6)

Fig. 2. Convert of flow rate from the root node in a spanning tree

Equation (5) ensures a flow between root node r and any
node j. Equation (6) is flow constraints for flow balance in all
of the nodes except for the root node. For example, in Fig. 2.
A directed graph consists of V = 12 nodes and the values of
x are shown. We need (|V |−1) = 11 flows to connect all the
nodes from the root node r. In addition, for non-root nodes,
the total number of flows leaving the node is always less than
the total number of flows entering a flow. The next equation
(7) ensures link disjoint in the spanning tree.

∑
t∈T

(ytij + ytji) ≤
∑
t∈T

kt − 1, ∀(i, j) ∈ E (7)

Equations (1) to (7) are presented above to minimize the
spanning tree in case of link failures.

325

B. Node failure

Next, we will build a spanning tree in case of node failure.
Constraints in eqs. (1) to (6) are the same as link failure
constructions, and we are not use constraint link disjoint (7)
in this case. We will explain the newly added constructions to
protect against node failure. First, we present constraints for
nodes as leaves in the spanning tree, in Eq. (8).

∑
i∈ V

wt
i ≤ kt |V | − 1, ∀ t ∈ T (8)

Next, we show the equation to calculate the degree of each
node in the spanning tree.

zti =
∑

(i,j)∈E

ytij +
∑

(j,i)∈E

ytji, ∀t ∈ T, ∀i ∈ V (9)

Following, we present constraints to satisfy the node condi-
tions.

(1 + ε)kt − ztj −Mwt
j ≤ 0, ∀ j ∈ V, ∀ t ∈ T (10)

ztj − 1−M(1− w
t
j) ≤ 0, ∀ j ∈ V, ∀ t ∈ T (11)

Equations (10) and (11) determine whether node j ∈ V in the
spanning tree t ∈ T is a leaf. Where ε is a sufficiently small
positive real number, and M is a sufficiently large positive
real number. The fact that if node j ∈ V is a leaf means that
the degree of node j is ztj = 1, then wt

j = 1. On the other
hand, if the degree of the node is greater than 1, then wt

j = 0.

C. Link-node failure

It can be guaranteed that network problems in case the link
or the node fails. Applying the constraint conditions required
for the node constraint failure combined with the constraint in
Eq. (7).

IV. PERFORMANCE ANALYSIS

This section compares our formulated ILP and the heuristic
algorithm-based approach in [4]. To conduct the comparison,
we evaluate the performance of both methods on two net-
works: the Japan Photonic Network (JPN25), and the National
Science Foundation Network (NSFNet). The evaluation results
are presented in Fig. 3, showing to compare the number of
spanning trees required for network protection against link
and/or node failure. From the results, it is observed that our

Fig. 3. Number of spanning trees for failure condition.

proposed ILP method outperforms the traditional heuristic
algorithm-based approach regarding the number of spanning

trees required to protect against node and link-node failures.
In the NSFNet network, the number of spanning trees required
node and link-node failures protection is 2 and 3, respectively,
while the traditional approach is both 4, corresponding to a
reduction of 50 % and 25 %. In the second network evaluated
as JPN25, we have reduced the number of spanning trees
required by 50 % for node and link-node failure protection.

By reducing the number of required spanning trees for
network protection, our proposed method also reduces the
memory demand for storing VLAN configurations, which are
used in network routing. This makes our method more efficient
in optimizing network design in the event of failure.

CONCLUSION

In this paper, we formulated the link and/or node failure
problems as an integer linear programming (ILP) problem to
minimize the number of spanning trees necessary for protec-
tion against link and/or node failure in the network. Compared
to the traditional approach of constructing spanning trees using
a heuristic algorithm, our method has successfully reduced the
number of required spanning trees that need to be built by 50
%, thereby reducing the memory demand for network routing
and decreasing network configuration complexity. Moreover,
This work provides the foundation for future research to
develop memory-optimized and efficient methods to protect
networks from link and/or node failures.

REFERENCES

[1] “Topical characteristics of the Japanese photonic network model, ”IEICE
Technical Report, PN2013-2, June 2013

[2] B. Zhou et al. “HDEER: A Distributed Routing Scheme for Energy-
Efficient Net-working” IEEE Journal on Selected Areas in Communica-
tions, vol. 34, no. 5, pp. 1713-1727, May 2016.

[3] “DRAFT IEEE Standard for Local and metropolitan area networks-
Virtual Bridged Local Area Networks” in Proc. IEEE Unapproved Draft
Std P802.1Q, 2009 Edition/D0.1, Feb. 2010.

[4] J. Farkaset al. “Distributed resilient architecture for Ethernet networks”
in Proc. 5th International Workshop on Design of Reliable Communi-
cation Networks, 2005.

[5] S. Sharma et al. “Viking: a multi-spanning tree Ethernet architecture for
the metropolitan area and cluster networks” in Proc. IEEE INFOCOM
2004, Hong Kong, China, 2004.

[6] Kitsuwan et al. “Independent Transient Plane Design for Protection in
OpenFlow-Based Networks” Journal of Optical Communications and
Networking, vol. 7, no. 4, Apr. 2015.

[7] Goyal et al. “Achieving faster failure detection in OSPF networks” in
Proc. IEEE Int. Conf. on Communications (IEEE ICC), USA, 2003.

[8] Li Ziyong et al. “P4Resilience: Scalable resilience for multi-failure
recovery in SDN with the programmable data plane” The International
Journal of Computer and Telecommunications Networking, Vol. 208,
2022.

[9] Rekhter et al. “EGP and Policy Based Routing in the New NSFNET
Backbone”, T.J. Watson Research Center, IBM Corporation, March
1988. Also, as RFC 1092, February 1989.

326

