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Abstract— In this paper, we envisage several types of 
validation models for a more realistic modelling analysis of 
disaster risk management. Therefore we extend our previous work 
on the analysis of the characteristics of disaster prevention 
behavior in the centralized invocation of n-dimensional networks 
which is based on the free-end spring oscillating systems as 
random Laplacian matrices. Through this work, we have 
identified physical properties in several model types. As an 
advantage of this study over other existing studies, the physical 
properties of the sparse matrix network associated with specific 
topology are explained, although the sparsity of the matrices is the 
same regardless of the graph structure, the type of topology 
produces characteristic differences in the eigenvalue distributions 
and eigenvectors. We also notice the distinctive differences in the 
eigenvectors as the stationary states corresponding to the largest 
eigenvalues. The analytical methods and potential applications of 
random Laplacian sparse matrices will also be discussed.  

Keywords—echo chamber, random Laplacian, network 
dynamics, sparse network 

I. INTRODUCTION 
Sparse matrices, the focus of this paper, are typically found in 

network representations such as adjacency and Laplacian 
matrices, and are known to play a role in clustering, signal 
processing, and feature selection. They are also used in fast 
algorithms for sparse matrices. And, often for social, biological, 
and communication networks with very few links, their graph 
shapes formulate sparse matrices as for network dynamics. In a 
word, the number of nonzero elements in the adjacency matrix 
is relatively small compared to the total number of elements. 
Thus, a spectral property of eigenvalues by adapting a large size 
of a random matrix does not result in a Wigner's semicircle-like 
averaging [1][2][3][4][5][6]. In this paper, we treat the relevant 
Laplacian matrices suitable for topology of minimum links 
related to the features from the random matrix. Namely, the 
matrix is set so that the non-diagonal components of the matrix 
take on various random values to form a real symmetric matrix. 
In addition, the sum of the components in each row is fixed to 
be zero. It is known that, for a large dimensions of random 
matrix, the histogram of eigenvalues asymptotically converges 
a certain distribution, regardless of the types of random number 
generators. However, by studying the various sparse cases, it is 
possible to characterize the different physical factors of the 
networks. The networks we adopt have the same number of links 
(connectors) extending from the starting node to each node to 

spread the information; therefore, each network has the same 
sparsity. Based upon the analysis of disaster prevention behavior 
of an n-dimensional network model interpreted as a free-end 
spring oscillating system in our previous study, we further 
investigate the behavior of information transfer in detail and in 
an extended manner. This research can be applied to linear 
variations of information flows from the central facility, such as 
the telephone-game-like system, and network topologies 
constructing sparse matrices with multiple hierarchical 
structures. Lastly, we discuss the dynamical features of the 
specific sparse network with a general interpretation of the 
results [7][8][9][10]. 

II. NETWORK TOPOLOGY TO BE STUDIED 
The topology of the graph structure that we have tested is 

shown in Figure 1. Types A, B, and C are extended from 
variations of the topology in which information is transmitted 
out of central facility. The typical system is Type Quo adopted 
in the previous paper. This exemplifies an application such that 
we can envision a system in which the first person to obtain 
information transfers it to the next one. It can also be interpreted 
to represent the transmission of information to a person 
belonging to a small system and disconnected from other system. 
Another case is a system in which information is spread from a 
telephone to each family member at a time, or to several partial 
systems from some entire system network topology. 

 
Type A   Type B 

 
Type C   Type Quo 

Fig. 1.  Network types to be verified 
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The random numbers used in the experiments are Gaussian, 
Gamma, Poisson, Binomial, and Beta distributions. However, 
only those that show significant results will be presented in this 
paper. Although we indicate only the three extended types 
above, many variations of sparse networks can be found in real 
world. Therefore, we also check a network topology in between 
Type B and C to verify the trends of results.  

III. NUMERICAL EXPERIMENTS AND THEORITICAL PERSPECTIVES  
In this section, we evaluate the sparsity, which is the fraction 

of zero elements in the random Laplacian matrix for each type, 
the properties of eigenvalue distributions for types and random 
numbers, and the stationary property of the eigenvector 
corresponding to the largest eigenvalue cross-sectionally. Table 
1 shows that the sparsity of matrices for a single centralized 
node transmitting the information is identical for all types of 
topologies.  

TABLE I.  MATRIX SIZE AND SPARSITY 
 n=7 n=8 n=9 n=10 n=11 
Type Quo 

0.6122 0.6563 0.6914 0.7200 0.7438 Type A 
Type B 
Type C 

 

For example, in Fig. 1, 𝑛𝑛 = 7, so the sparsity is 0.612. where n 
is the number of nodes in all cases. The nodes are connected to 
each other with minimal links, including those in between Types 
B and C. The following relationship is derived for the sparsity. 

 Sparseness = 𝑛𝑛2−3𝑛𝑛+2
𝑛𝑛2  () 

The sparsity converges to 1 when n goes to infinity as indicated 
in equation (1). The asymptotic behavior of it with respect to the 
number of nodes is shown in Fig. 2. It can be seen a rapid 
convergence when n is around 100, which means that higher 
accuracy can be expected in the approximate solution.  

 
Fig. 2. Asymptotic behavior of sparsity with respect to n 

Table 2 displays the eigenvalue distributions calculated from 
the Type Quo graph topology for a random matrix composed of 
Gaussian distributions with a fixed mean of 10 and three 
different standard deviations, as well as random numbers from 
the gamma, and beta distributions. It is noteworthy to mention 
that the shape of the eigenvalue distribution of Type Quo, a.k.a. 
Random Star Laplacian matrix, has the same shape as the 
distribution of random numbers. In fact, the eigenvalues form a 
similar distribution corresponding to the distribution for each 
random number, although our previous studies have shown that 
Type Quo does not obey the Wigner semicircle rule. The graphs 
in Fig. 1 can also be attributed to the Newton's equations of 
coupled vibration models of spring with free ends described in 
the previous study [10]. Each of the following matrices is the 
associated coefficient matrix. Certain components are given by 
random numbers, and the components 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑗𝑗 ≥ 𝑖𝑖) of the real 
symmetric matrix 𝑋𝑋 = [𝑥𝑥𝑖𝑖𝑖𝑖] are constructed independently. For 
example, Type Quo takes the form of the following random 
Laplacian matrix: 

 ℒ𝑟𝑟𝑟𝑟𝑛𝑛
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑄𝑄𝑄𝑄𝑄𝑄 =

[
 
 
 
 
 
 D −|Δ1| −|Δ2| ⋯ ⋯ −|Δn−2| −|Δn−1|

−|Δ1| |Δ1| 0 ⋯ ⋯ 0 0
−|Δ2| 0 |Δ2| 0 ⋱ ⋱ 0

⋮ ⋮ 0 ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 0 ⋱ 0 ⋮

−|Δn−2| 0 ⋱ ⋱ ⋱ |Δn−2| 0
−|Δn−1| 0 0 ⋯ ⋯ 0 |Δn−1| ]

 
 
 
 
 
 

 () 

 D = ∑ |Δi|n−1
i=1 . () 

The matrix components |Δ𝑖𝑖|  are mapped with the random 
numbers obtained from the respective probability density 
functions. This constructs the random Laplacian matrix to 
realize its graph topology. The general matrices of Type A, B, 
and C are shown below in (4), (6), and (8): 

 ℒ𝑟𝑟𝑟𝑟𝑛𝑛
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴 =

[
 
 
 
 
 
 
 D1 −|Δ1|
−|Δ1| D2 −|Δ2|

−|Δ2| D3 −|Δ3|
−|Δ3| ⋱ ⋱

⋱ ⋱ −|Δn−2|
−|Δn−2| Dn−1 −|Δn−1|

−|Δn−1| Dn ]
 
 
 
 
 
 
 

 () 

 {
D1 = |Δ1|

DJ = ∑ |Δi|𝑗𝑗
𝑖𝑖=𝑗𝑗−1   (𝑗𝑗 = 2,3,4,⋯ ,𝑛𝑛 − 1)

Dn = |Δn−1|
 () 

 ℒ𝑟𝑟𝑟𝑟𝑛𝑛
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐵𝐵 =

[
 
 
 
 
 
 
 
 D1 −|Δ1| 0 ⋯ −|ΔK| 0 ⋯ 0
−|Δ1| D2 −|Δ2|

0 −|Δ2| D3 −|Δ3|
⋮ −|Δ3| ⋱ 0

−|ΔK| 0 DK −|Δk+1|
0 −|Δk+1| ⋱ −|Δn−2|
⋮ −|Δn−2| Dn−1 −|Δn−1|
0 −|Δn−1| Dn ]

 
 
 
 
 
 
 
 

 () 
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{
  
 

  
 𝑘𝑘 = 𝑖𝑖𝑖𝑖𝑖𝑖. (𝑖𝑖+12 )

D1 = |Δ1| + |ΔK|
D𝑗𝑗 = ∑ |Δi|𝑗𝑗

𝑖𝑖=𝑗𝑗−1   (2 ≤ 𝑗𝑗 ≤ 𝑖𝑖−1; 𝑗𝑗 ≠ 𝑘𝑘)
DK = |ΔK| + |Δk+1|
Dn = |Δn−1|

 () 

 ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶 =

[
 
 
 
 
 
 
 
 D1 −|Δ1| 0 −|Δ3| ⋯ −|Δn−3| ⋯ 0
−|Δ1| D2 −|Δ2|
0 −|Δ2| D3 0

−|Δ3| 0 D4 −|Δ4|
⋮ −|Δ4| ⋱ 0

−|Δn−3| 0 Dn−2 −|Δn−2|
⋮ −|Δn−2| Dn−1 −|Δn−1|
0 −|Δn−1| Dn ]

 
 
 
 
 
 
 
 

 () 

where 𝑗𝑗 is an integer greater than or equal to 1:  

 

{
 
 

 
 D1 = ∑ |Δ2𝑖𝑖−1|

𝑖𝑖𝑖𝑖𝑖𝑖.[(𝑖𝑖+1) 2⁄ ]
𝑖𝑖=1

D2𝑗𝑗 = ∑ |Δi|2𝑗𝑗
𝑖𝑖=2𝑗𝑗−1

D2j+1 = |Δ2j|
Dn = |Δn−1|

 () 

TABLE II.  EIGENVALUE DISTRIBUTIONS FOR TYPE QUO WITH VARIOUS 
RANDOM NUMBERS  (𝑖𝑖 = 1000) 

𝒓𝒓𝟐𝟐 ≈ 𝟏𝟏. 𝟎𝟎 
Normal random distribution Eigenvalue distributions 

𝝁𝝁 = 𝟏𝟏𝟎𝟎. 𝟎𝟎, 

𝝈𝝈 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟐𝟐. 𝟎𝟎

} 

  
Gamma random distribution Eigenvalue distributions 

𝜽𝜽 = 𝟏𝟏. 𝟎𝟎 
𝒌𝒌 = 𝟎𝟎. 𝟓𝟓 

  
Beta random distribution Eigenvalue distributions 

𝜶𝜶 = 𝟎𝟎.𝟓𝟓 
𝜷𝜷 = 𝟎𝟎. 𝟓𝟓 

  

𝜶𝜶 = 𝟓𝟓.𝟎𝟎 
𝜷𝜷 = 𝟏𝟏. 𝟎𝟎 

  

To analyze this quantitatively, the correlation coefficients are 
used to see the similarity between the random distribution of 
linking weights and the distribution of eigenvalues. We utilize 
the key statistical values such as mean and standard deviation, 
etc. The results are summarized in Table 3. 

TABLE III.  CORRELATION ANALYSIS FOR THE EIGENVALUE AND 
RANDOM NUMBER DISTRIBUTIONS 

Distributions Average Standard 
Deviation Kurtosis Skewness 

Gaussian  0.99857 0.68576 N/A N/A 
Gamma  0.99926 0.99869 0.69245 0.90605 
Beta  0.99868 0.99865 0.92358 0.98526 
Chi-square  0.99987 0.99970 0.79501 0.840367 

 
The results show that there is an extremely strong correlation 

between the shape of the random number and that of the 
eigenvalue distributions. Furthermore, Fig. 3 is a biaxial scatter 
plot showing the correlation between the mean values of the 
eigenvalues and that of the corresponding Gaussian random 
numbers for Type Quo. The correlation coefficient for the entire 
data set is that: 𝑟𝑟2 = 0.99857. 

 
Fig. 3. Type Quo, correlation analysis of Gaussian random numbers (σ =
1, μ{0.0, 1.5, 1.0, 2.0, 10.0}) 

The symbol, ×, in Fig. 3 is the mean value of the Gaussian 
random number, and the solid curve is the mean of the 
eigenvalue distribution from the Laplacian matrix for Type Quo. 
Similar validation is performed for the gamma, Poisson, 
binomial, beta, and chi-square distributions, which also shows 
a strong correlation between shapes of the eigenvalue and 
random distributions. Table 4 displays the eigenvalue 
distributions computed from the graph topology of Type A, B, 
and C for random matrices composed of various random 
numbers with different parameters. The results depict that these 
eigenvalue distributions, unlike Type Quo, are not correlated 
with the random number distributions. It seems that the low 
eigenvalue spectra become more frequent for all random 
number distributions. However, a random distribution which 
generates larger values more frequently, such as the beta 
distribution with 𝛼𝛼 = 5.0 and 𝛽𝛽 = 1.0, gives the spectra evenly 
distributed among medium and high eigenvalues. Moreover, in 
the case of Type C, the spectra are divided into two regions, one 
for lower and the other for higher eigenvalues. 
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TABLE IV.  TYPE A, B, AND C EIGENVALUE DISTRIBUTIONS WITH 
VARIOUS RANDOM NUMBERS (𝑛𝑛 = 1000) 

Type A, 𝒓𝒓𝟐𝟐 ≈ 𝟎𝟎. 𝟎𝟎 
Normal random distribution Eigenvalue distributions 

𝝁𝝁 = 𝟏𝟏𝟎𝟎. 𝟎𝟎, 

𝝈𝝈 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟐𝟐. 𝟎𝟎

} 

  
Gamma random distribution Eigenvalue distributions 

𝜽𝜽 = 𝟏𝟏. 𝟎𝟎 
𝒌𝒌 = 𝟎𝟎. 𝟓𝟓 

  
Beta random distribution Eigenvalue distributions 

𝜶𝜶 = 𝟎𝟎. 𝟓𝟓 
𝜷𝜷 = 𝟎𝟎. 𝟓𝟓 

  

𝜶𝜶 = 𝟓𝟓. 𝟎𝟎 
𝜷𝜷 = 𝟏𝟏. 𝟎𝟎 

  
Type B, 𝒓𝒓𝟐𝟐 ≈ 𝟎𝟎. 𝟎𝟎 

Normal random distribution Eigenvalue distributions 

𝝁𝝁 = 𝟏𝟏𝟎𝟎. 𝟎𝟎, 

𝝈𝝈 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟐𝟐. 𝟎𝟎

} 

  
Gamma random distribution Eigenvalue distributions 

𝜽𝜽 = 𝟏𝟏. 𝟎𝟎 
𝒌𝒌 = 𝟎𝟎. 𝟓𝟓 

  
Beta random distribution Eigenvalue distributions 

𝜶𝜶 = 𝟎𝟎. 𝟓𝟓 
𝜷𝜷 = 𝟎𝟎. 𝟓𝟓 

  

𝜶𝜶 = 𝟓𝟓. 𝟎𝟎 
𝜷𝜷 = 𝟏𝟏. 𝟎𝟎 

  
Type C, 𝒓𝒓𝟐𝟐 ≈ 𝟎𝟎. 𝟎𝟎 

Normal random distribution Eigenvalue distributions 

𝝁𝝁 = 𝟏𝟏𝟎𝟎. 𝟎𝟎, 

𝝈𝝈 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟐𝟐. 𝟎𝟎

} 

  
Gamma random distribution Eigenvalue distributions 

𝜽𝜽 = 𝟏𝟏. 𝟎𝟎 
𝒌𝒌 = 𝟎𝟎. 𝟓𝟓 

  
Beta random distribution Eigenvalue distributions 

𝜶𝜶 = 𝟎𝟎. 𝟓𝟓 
𝜷𝜷 = 𝟎𝟎. 𝟓𝟓 

  

𝜶𝜶 = 𝟓𝟓. 𝟎𝟎 
𝜷𝜷 = 𝟏𝟏. 𝟎𝟎 

  

Table 5 shows the eigenvectors corresponding to the 
maximum eigenvalues for each type computed with the random 
number distribution; the eigenvectors for Type Quo and Type 
C have a similar feature, but Type A and Type B are different 
from them. They exhibit a partially pulse-like shape, which 
indicates some specific stationary characteristics. In addition to 
the Gaussian random numbers, the eigenvectors of the largest 
eigenvalue for the beta, gamma, and Poisson distributions are 
compared. The eigenvectors have almost the same shape for 
each type. In other words, there is no difference in the shape of 
the eigenvectors depending on the random number distributions. 

TABLE V.  EIGEN VACTORS OF MAXIMUM EIGEN VALUES WITH 
GAUSSIAN AND OTHER RANDOM DISTRIBUTIONS (𝑛𝑛 = 30) 

Normal random 
distribution: 

𝝁𝝁 = 𝟏𝟏𝟎𝟎. 𝟎𝟎, 

𝝈𝝈 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟐𝟐. 𝟎𝟎

} 

Gamma random 
distribution: 

𝜽𝜽 = 𝟏𝟏. 𝟎𝟎 

𝒌𝒌 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟓𝟓. 𝟎𝟎

} 

Beta random 
distribution: 

𝜶𝜶 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟓𝟓. 𝟎𝟎

} 

𝜷𝜷 = {
𝟎𝟎. 𝟓𝟓,
𝟏𝟏. 𝟎𝟎,
 𝟑𝟑. 𝟎𝟎

} 

Type Quo 

   
Type A 

   
Type B 
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Type C 

   

IV. DISCUSSION AND CONCLUSION 
Networks, which have the fewest number of links with a 

topology of centralized information transfer, take the same 
sparsity of their Laplacian matrices. Nevertheless, the 
properties of the eigenvalues and eigenvectors differ depending 
on the geometry of the network.  

It is remarkable that the eigenvalue spectra of Type Quo (the 
star network) resemble those of the random number 
distributions. This can be interpreted as the distribution of 
linking weights in Type Quo is like the resonance patterns of 
information transmission. Then, the behavior of eigenvectors at 
the largest eigenvalue of Type C is similar to that of Type Quo. 
In other words, as the number of links from the central node 
increases, the eigenvectors tend to converge to the shapes that 
look similar to those of Type Quo. This tendency has been 
verified with other types of sparse networks.  

On the other hand, for Type A and Type B, the behavior of the 
eigenvectors at the maximum eigenvalue is oscillatory, which 
can be interpreted as an excitation of relative information to 
make bias in some links of the information transmission. The 
eigenvalue distribution of Type Quo is highly correlated with 
that of random numbers as shown in Fig. 3. However, the 
eigenvalue distributions of Type A, B, and C are not similar to 
those of the random numbers, but the spectra of the middle and 
high eigenvalues vary with the distributions of the random 
numbers slightly. The common feature of Type A, B, and C is 
that the eigenvalues spectra tend to be concentrated near zero. 
This property is considered to reflect the nature of eigenvalue 
distributions obtained from general random sparse matrices 
[11]. It is interesting to note that the eigenvectors corresponding 
to the largest eigenvalues such that Type C exhibit stationary 
properties similar to those of Type Quo, while the eigenvalue 
distribution properties are different from those of Type Quo. 
Namely, the eigenvector shapes tend to converge, but the 
eigenvalues do not.  

In this study, we have found that the sparsity of matrices has 
nothing to do with properties of eigenvalue distributions and 
eigenvectors in centralized network topologies. Then, the 
linkages with fewer than three branches from the center and 
those with many branches besides Type Quo have similar 
shapes of eigenvalue distributions, but eigenvectors. The results 
show that a notable difference appears in the eigenvectors, i.e., 

the stationary state of the information. This research may 
provide clues to analyze how the shape of the infrastructure of 
information transfer affects its efficiency and effectiveness. The 
further developments will be expected in the future. 
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APPENDIX 
Algorithm to produce the results of random Laplacian 

matrices: 
1. Determine the size of the matrix by selecting n (e.g., 

𝑛𝑛 = 100)  
2. Set the parameters for the random numbers out of 

probability density functions (PDF). (e.g., Normal 
random distribution: 𝜇𝜇 = 0.0, 𝜎𝜎 = 1.0)  

3. Each element 𝐴𝐴[𝑖𝑖, 𝑗𝑗] is independently sampled from the 
PDF in procedure 1  

4. Construct the Laplacian matrix, ℒ𝑟𝑟𝑟𝑟𝑟𝑟: The elements of 
ℒ𝑟𝑟𝑟𝑟𝑟𝑟[𝑖𝑖, 𝑗𝑗] must be symmetric, and then the sum of each 
row has to be zero. 

5. Compute the eigenvalues and eigenvectors.  
6. Normalize the eigenvalue spectra with dividing by √𝑛𝑛. 

Arrange for the visualization of data: Obtain the array of 
eigenvalues (excluding the 0 eigenvalue.) Create 
histograms of eigenvalues, and plots of eigenvectors. 
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