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Abstract—More than often, the output of a comprehensive
network-wide performance modeling is a non-linear and non-
convex function of the input data. To estimate the non-linear
relationship of such a procedure, this paper employs a data-
driven methodology. By formulating the non-linear objective as a
geometric program, we leverage Levenberg-Marquardt algorithm
to fit a convex log-sum-exponential function to data obtained
through system-level simulation. Focusing on the downlink energy
efficiency in mmWave cellular networks, we formulate a convex
optimization problem and numerically obtain the optimal BS
density and transmit power.

Index Terms—Regression, Geometric Programming, Energy
Efficiency, mmWave, Levenberg-Marquardt algorithm (LMA)

I. INTRODUCTION

Ultra-dense networks (UDNs) can leverage mmWave and
terahertz bands, deploying numerous small cells to meet surg-
ing mobile data demands. Yet, energy consumption remains
a pivotal concern, driving the focus on enhancing energy
efficiency (EE) in cellular networks [1]. The base station
(BS) stands as a prime contributor to energy consumption.
Optimizing BS density and transmit power emerges as a viable
avenue for bolstering EE.

To curtail BS energy usage, strategies like switching off
BS and micro BS deployment have emerged. Geometric
programming (GP), noted for its adeptness in handling non-
linear objectives and constraints, has found application in
communication systems design [2], spanning power control
[3], cost optimization [4], and EE enhancement [5]. Despite
these advancements, much prior work relies on stochastic
geometry, confined to simplified network settings. Studies
such as [6] explore logistic function coverage approximations.
Numerous works propose tools to fit data and create convex
functional models. [7] introduces an efficient least-squares
partition algorithm for data fitting with max-affine functions,
paralleling [8]’s method for max-monomial functions. [9]
proposes two convex function classes for convex regression.
Fitting data with posynomial models is done in [10] and [11].

This paper investigates a data-driven method to model
various network setups, capturing the performance metric’s
relationship with network parameters. We demonstrate effec-
tive convex approximation of EE data. Using two prevalent

non-linear least squares algorithms, the Levenberg-Marquardt
algorithm (LMA) and the Trust-Region-Reflective (TRR), we
compare their fitting performance.

II. SYSTEM MODEL

Consider a mmWave operated downlink multicell network
where the BSs and user equipments (UEs) are spatially dis-
tributed according to a homogeneous Poisson Point Process,
Φb and Φu with density λb and λu, respectively. All BSs
transmit the same power P , commonly adjusted among them,
and all BSs and UEs are equipped with a single antenna. Each
UE is served by the BS with the strongest received signal. For
a UE, the probability that a BS at distance ri is line of sight
(LoS) is e−βri , where 1/β = 141.4 m, is the blockage density
in urban area. If k-th BS is the serving BS, then the signal to
interference plus noise ratio (SINR), γ is expressed as:

γ =
PhkGbGu||rk||−αL/N

σ2 +
∑K

i,ri∈ϕb\rk Phiψi||ri||−αL/N

, (1)

where hi ∼ exp(1) accounts for Rayleigh fading gain, σ2 is
the noise power, and ψi ∈ {GbGu, Gbgu, gbGu, gbgu}, where
Gb, gb, Gu and gu are the main and side lobe antenna gains
for BS and UE, respectively. Path loss exponents for LoS
and non-line of sight (NLoS) are αL and αN, when “L” and
“N” denote LoS and NLoS, respectively. For a given SINR
threshold θ, the areal throughput and EE are defined as:

T(λb, P, θ) = λb log2(1 + θ) Pr[γ ≥ θ], (2)

EE =
T(λb, P, θ)

λbPtot(P )
=

T(λb, P, θ)

λbρ
(
PC + P

η

) , (3)

where Ptot(P ) = total power consumption of BS, PC = 2.1W
is the circuit power per antenna, η = 0.08 is the power
amplifier efficiency of BSs and ρ = 1.21 is the power loss
rate of the DC-DC converter, current supply and cooling [11].

III. OVERVIEW OF GEOMETRIC PROGRAMMING

To model the network with GP [4], we parameterize a GP
compatible function through convex regression. In GP, the
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objective and constraints can only be composed of mono-
mial and posynomial functions. A posynomial is a function
g(x) : Rn

++ → R++ of the form g(x) =
∑K

k=1 ck
∏n

j=1 x
ajk

j

where ck ∈ R++ and ak = (a1k, ..., ank) ∈ Rn. When K = 1,
posynomial (gi) becomes monomial (hi). GP is formulated as:

minimize
x

g0(x)

subject to gi(x)≤1, i = 1, ...,m

hi(x)=1, i = 1, ..., n

(4)

The transformation ui = log xi and bk = log(ck) con-
verts GP into convex optimization problem and the posyn-
omial function g(x) becomes log-sum-exp function f0(u) =

log
(∑K0

k=1 e
aT
0ku+b0k

)
.

IV. EE PERFORMANCE AND DATA FITTING

Given a set of data points which is multivariate, D =
{(xi, wi)|i = 1, ...,m}, we are interested in modelling these
data points with posynomial function which is GP-compatible.
Our fitting procedure involves logarithmic transformation of
the multivariate data as (ui, wi) = (log xi, log yi), and fitting
a convex function to the resulting data, where log xi =
(log x1, ..., log xn) is the vector containing the log of the
decision variables for the ith data point. Therefore, the original
data must be strictly positive because of the log transformation.
Based on (3), the EE optimization for the multicell network
is formulated as follows,

maximize
λb,P

EE(λb, P, θ)

subject to λmin≤λb≤λmax

Pmin≤P≤Pmax

(5)

This aims to solve for the optimal λb and P that maximize
EE under the given constraints. The data obtained from simula-
tion {λb, P, EE} is log transformed, denoted as {λ̃b, P̃ , ẼE}.
We consider that SINR threshold θ is fixed meaning that all
users have the same rate log2(1 + θ) bps/Hz if transmission
is successful, i.e., γ ≥ θ. Now we can fit the log-transformed
data with the log-sum-exp function.

A. Fitting model parameters

This section describes the fitting process. We use the log-
sum-exponential function as our convex fitting function. Given
m data points (ui, wi) ∈ Rn×R, we aim to minimize the least
squared error: F =

∑m
i=1(f0(ui;β) − wi)

2 where f0 is our
fitting function and β ∈ Rn is a vector containing the function
parameters a and b. The least squares problem is non-convex,
i.e., it can have multiple local minima.

B. Levenberg-Marquardt algorithm

The LMA, Algorithm 1 [12], uses a search direction that is a
solution of the linear set of equations: (JT J+λdiag(JT J))δ =
−JT r, where J is the Jacobian of the objective function, F
and r(β) = f0(X;β) − Y is the residual vector. D adjusts
the trust region, ∆ for next iteration after parameter update,
δ. The regularization term, λ smoothly transitions between the
steepest descent method and Gauss-Newton method. When λ

TABLE I
SYSTEM PARAMETERS AND THEIR VALUES

Parameter Value
BS transmit power P 5 dBm to 55 dBm

BS density λb 1 km−2 to 1000 km−2

UE density λu (100/π) km−2

Pathloss exponent, αL, αN 2, 4
Carrier frequency fc 28 GHz

BS antenna gains, Gb, gb 18 dB, −2 dB
UE antenna gains, Gu, gu 0 dB, 0 dB
Frequency Bandwidth, W 100 MHz

Noise Power, σ2 −174 dBm/Hz + 10 log10 W
+ 10 dB

is small, LMA behaves more like the Gauss-Newton method,
leading to faster convergence in well-conditioned regions. And
when λ is large, LMA behaves more like the steepest de-
scent method, providing better convergence in ill-conditioned
regions. Hence, the LMA combines the advantages of the
two algorihms. The second algorithm, Trust-Region-Reflective
(TRR) operates within a trust region. Calculation of the step
between iterates requires the solutions of a problem of the
form: min Ψ(ω) : ||ω|| ≤ ∆, where Ψ represents a local model
to the objective function, and ∆ is the maximum allowable
step length in the parameter space.

Algorithm 1 Levenberg-Marquardt iteration
Given ∆k > 0, find λk ≥ 0 such that
if (JT J + λdiag(JT J))δ = −JT r then

either λk = 0 and ||Dkδk|| ≤ Dk

or λk > 0 and ||Dkδk|| = ∆k

end if
if ||F (xk + δk)|| < ||F (xk)|| then

set xk+1 = xk + δk and evaluate Jk+1

else set xk+1 = xk and Jk+1 = Jk
end if
choose ∆k and Dk+1

V. NUMERICAL RESULTS AND CONCLUSIONS

The values of system parameters for the Monte Carlo
simulations of the network are listed in Table I.

The nonlinear least squares problem is randomly initialized
multiple times. For fair comparison, the same initial param-
eters in the two algorithms are used. The function tolerance
is set to 10−6. Table II summarizes a typical performance.
“Iteration” is the number of repetition until the change in
the sum of squares w.r.t, initial value is less than function
tolerance. “Function-count” is the total times the objective
function is assessed, informing about computational efficiency.
“Residual” is the variance between observed and predicted
values in the model.

Fig. 1 and 2 illustrate the fitted curves on the simulation
data (square dots) using LMA and TRR. Both algorithms
demonstrate effective fitting. In our network context, LMA
exhibits quicker convergence on average and involves fewer
function evaluations. It is worth noting that while both may not
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Fig. 1. Fitted log-sum-exp function on the log-transformed data (λ̃b, P̃ , ẼE)
with K = 7 affine terms and residual = 0.502205 after 42 LMA iterations.

Fig. 2. Fitted log-sum-exp function on the log-transformed data (λ̃b, P̃ , ẼE)
with K = 7 affine terms and residual = 0.502557 after 95 TRR iterations.

necessarily converge to the same optimum, the final residuals
are similar, resulting in near-identical graph shapes and nearly
equal optimal solutions. The fitted functions in Fig. 1 and Fig.
2 are parameterized as follows:

f0 LMA(λ̃b, P̃ ) = − log(e−3.4677−1.1814λ̃b+0.9754P̃+

e6.1248−0.9965λ̃b−0.9019P̃ + e0.4250−2.4019λ̃b−2.3266P̃+

e2.1369−0.4621λ̃b−1.2477P̃ + e−0.7696+0.1492λ̃b−0.0018P̃+

e−6.2438+0.1935λ̃b+1.0004P̃ + e2.3149−1.0957λ̃b+0.0066P̃ ) (6)

f0 TRR(λ̃b, P̃ ) = − log(e−0.7881+0.1500λ̃b+0.0008P̃+

e2.3640−1.0979λ̃b−0.0005P̃ + e6.1353−0.9903λ̃b−0.9091P̃+

e−6.2448+0.1934λ̃b+1.0005P̃ + e0.7722−0.2986λ̃b−1.0073P̃+

e−3.4632−1.1812λ̃b+0.9750P̃ + e25.0087−0.7991λ̃b−22.0761P̃ ) (7)

The final EE optimization problem is formulated below:

max
λ̃b,P̃

− log(

K∑
k

exp (bk + akλ̃b
λ̃b + akP̃ P̃ ))

subject to λ̃min≤λ̃b≤λ̃max

P̃min≤P̃≤P̃max

(8)

TABLE II
TYPICAL PERFORMANCES OF LMA AND TRR

Algorithm Iteration Function-count Residual

LMA
59 1357 0.505634
68 1555 0.502218
42 970 0.502205

TRR
95 2112 0.518031
79 1760 0.502225
95 2112 0.502557

Through LMA and TRR fitting, we demonstrated the effi-
cacy of data-driven modeling for GP. LMA showcased swifter
convergence and fewer evaluations, though both methods
yielded near-identical solutions. Future work will address the
solution to the formulated GP.
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