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Abstract—In recent years, multi-modal analysis has
gained significant prominence across domains such as
audio/speech processing, natural language processing,
and affective computing, with a particular focus on
speech emotion recognition (SER). The integration of
data from diverse sources, encompassing text, audio,
and images, in conjunction with classifier algorithms
has led to the realization of enhanced performance
in SER tasks. Traditionally, the cross-entropy loss
function has been employed for the classification
problem. However, it is challenging to discriminate
the feature representations among classes for multi-
modal classification tasks. In this study, we focus
on the impact of the loss functions on multi-modal
SER rather than designing the model architecture.
Mainly, we evaluate the performance of multi-modal
SER with different loss functions, such as cross-
entropy loss, center loss, contrastive-center loss, and
their combinations. Based on extensive comparative
analysis, it is proven that the combination of cross-
entropy loss and contrastive-center loss achieves
the best performance for multi-modal SER. This
combination reaches the highest accuracy of 80.27%
and the highest balanced accuracy of 81.44% on the
IEMOCAP dataset.

Index Terms—center loss, contrastive-center loss,
cross-entropy loss, multi-modal analysis, multi-modal
model, speech emotion recognition

I. Introduction
Speech emotion recognition (SER) involves analyzing

the tone and context of speech to predict the emotional
states of the speakers. SER has a wide range of
applications, including medical diagnosis, patient care,
fraud detection, and lie detection. The rapid growth of
artificial intelligence has enabled SER to achieve higher
levels of accuracy, particularly with the emergence of
multi-modal techniques that combine multiple forms of
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data. This progress has opened new opportunities for
SER to be applied in various industries. Multi-modal
techniques utilize multiple inputs from various sources
to enhance the features and leverage their fusion to
improve model performance. In the context of SER,
multi-modal techniques involve combining audio, text,
and image data. Recent research has demonstrated the
effectiveness of multi-modal techniques in SER, such as
the SERVER model [1], which uses BERT [2] for natural
language processing and VGGish [3] for audio processing
to achieve performance improvements. Another approach,
3M-SER [4], proposes a fusion module based on the multi-
head attention mechanism in the Transformer model [5],
effectively focusing on the useful features produced by the
multiple inputs to further enhance performance.

While the fusion of multiple modalities can lead
to diverse sizes, shapes, and value ranges in feature
vectors, they all share the commonality of transforming
multiple data into feature vectors within latent space.
Subsequently, another algorithm is employed to generate
distinct feature vectors, representing the fused features
from the various inputs. In the training phase, the cross-
entropy loss is often utilized to compute the cost function.
However, relying solely on cross-entropy loss might not
provide enough strength to effectively differentiate feature
vectors, thus hindering the ability to specify unique feature
vectors for each class within the dataset. Consequently,
this limitation can potentially impact the performance of
multi-modal techniques.

To address this challenge, we adopt an alternative
approach to the loss functions aimed at enhancing the
accuracy of multi-modal SER. Specifically, we evaluate
the performance of multi-modal SER by comparing
several loss functions, such as cross-entropy loss, center
loss, contrastive-center loss [6], and their combinations.
Subsequently, we integrate these loss functions with the
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softmax function for the classification and adjustment
of feature vectors, resulting in superior accuracy
compared to employing only the cross-entropy loss.
Our experimentation on the IEMOCAP [7] dataset has
showcased a significant enhancement in the performance
of the multi-modal SER using the combination of cross-
entropy and contrastive-center losses with the softmax
function, achieving the highest accuracy (ACC) of 80.27%
and the highest balanced accuracy (BACC) of 81.44%.

The rest of the paper is organized as follows. Section II
presents a literature review and related studies. Section III
provides a detailed explanation of the methodology itself.
We also discuss the advantages of our approach over
the previous methods. Section IV and Section V present
the experiment setup, the dataset used, and the results.
Finally, Section VI concludes the study and discusses
potential avenues for future research.

II. Related work
A. Multi-modal SER

The multi-modal analysis aims to fuse diverse modalities
or sources of information to take advantage of the
combined knowledge and enhance the performance
of various tasks. These modalities can range from
text, images, audio, and videos to sensor data and
other machine-readable data. By integrating multiple
modalities, multi-modal analysis can extract more
comprehensive and accurate insights than single-modal
models. Multi-modal approaches have been increasingly
used for SER, as they have shown promising results
in improving the accuracy and robustness of emotion
recognition systems. By combining speech signals with
other modalities such as facial expressions, audio, and
texts, the multi-modal models can capture a complete
picture of the users’ emotional states, reducing ambiguity
and enhancing the model’s ability to recognize and
respond to different emotions accurately.

Many studies have applied multi-modal approaches
to SER before. A common approach is the fusion
of audio and textual information. Textual features,
such as transcriptions of spoken words or text-based
sentiment analysis, can provide semantic information that
complements the acoustic cues captured by audio features.
By combining audio and textual modalities, researchers
aim to capture both the acoustic and semantic aspects of
emotions, improving emotion recognition accuracy.

SERVER [1] proposed a deep learning-based approach
that combines audio and textual features for emotion
recognition using two well-known architectures, BERT [2]
and VGGish [3]. In SERVER, audio features are extracted
from the raw audio signals using spectrograms, and
textual features are obtained from transcriptions of the
corresponding audio segments. SERVER [1] showed a
significant improvement in SER accuracy by incorporating
both audio and textual features using the BERT and
VGGish architectures.

Moreover, the subsequent research conducted in the
3M-SER [4] study further improved the performance
by incorporating fusion modules. In the 3M-SER, an
attention mechanism was employed to enhance the
fusion of textual and audio features, enabling the multi-
modal models to gain a deeper understanding of the
emotional content within the speech. By leveraging
the attention mechanism, the fusion module facilitated
improved integration of the two modalities, leading to a
more meaningful representation of emotions.

B. Loss functions for classification

Cross-entropy loss with softmax function is a widely
used and effective method for solving classification
problems. It has proven to be successful in numerous
applications. Additionally, this versatile loss function can
be employed to train feature-extracted models, enabling
them to convert inputs into feature vector representations
that capture the underlying meaning of the inputs.
By leveraging the power of cross-entropy loss with the
softmax function, we can enhance the performance of
classification models, leading to better outcomes in various
domains. While cross-entropy loss function is a commonly
used method for feature separation, it may not always
capture sufficient discriminative information. Wen et al. [8]
highlights the limitations of cross-entropy loss in terms
of capturing intra-class variations, which can reduce the
model’s ability to distinguish among similar samples
within the same class.

To address this issue, various techniques have been
proposed to enhance the discriminative power of
feature extraction models. For instance, feature learning
approaches like contrastive-center loss [6] or center
loss [8] can be incorporated alongside cross-entropy loss
to encourage greater inter-class separation and intra-
class compactness. By incorporating these techniques, the
model can better differentiate similar samples within the
same class while maintaining a clear separation among
different classes. Center loss is a powerful technique
that enhances the quality of results by minimizing
intra-class variations based on Euclidean distances while
simultaneously preserving inter-class distinctions using
cross-entropy loss.

Despite its effectiveness, the center loss function has
a limitation in that it overlooks inter-class separability,
as highlighted in [6]. To address this limitation,
the contrastive-center loss function [6] is proposed to
consider both intra-class compactness and inter-class
separability, thereby reducing the weakness observed in
the center loss function. Indeed, the contrastive-center
loss function has demonstrated remarkable success in
numerous applications, particularly in the field of single-
modal SER [9], [10]. The utilization of the contrastive-
center loss function in these studies has yielded important
performance improvements.
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III. Methodology

Feature vectors are commonly used to represent the
features of input contexts in classification and verification
tasks. Various methods have been employed to create
a margin among these feature vectors to improve
classification accuracy. In multi-modal techniques,
multiple features from various sources are combined
to achieve efficient feature vectors that represent the
closest meaning to the inputs. To create such a feature,
the contrastive-center loss is an effective approach, as
it creates a high margin among feature vectors. In this
study, we compare the effectiveness of the contrastive-
center loss function on the fusion feature vectors of
two high-performance multi-modal models: SERVER [1]
and 3M-SER [4]. Both models utilize text to enhance
audio features and improve model accuracy. They use
BERT [2] to extract features from the text, which are
then concatenated with the audio features extracted
from VGGish [3]. Additionally, 3M-SER incorporates a
fusion module after concatenating these features to create
better fusion feature vectors and further improve the
performance of multi-modal techniques.

The fusion feature vectors play a crucial role in the
effectiveness of multi-modal models as they capture the
primary characteristics of multiple inputs. The accuracy of
multi-modal models improves when the feature vectors can
better differentiate among unrelated features. However,
achieving better intra-class compactness and inter-class
separability in the training of fusion feature vectors is
challenging when using cross-entropy loss. To address this,
we employ center loss and contrastive-center loss [6], which
is well-suited for this task and achieves high separability in
inter-class and intra-class features. Center loss is a strategy
for constructing widely separated classes. It adds a penalty
term to the standard supervised loss based on the distance
of each data point to its class center. The formula for the
center loss function (Lc) is given as follows:

Lc = 1
2

n∑
i=1

||xi − cyi ||22 (1)

where n represents the total number of samples, xi ∈ Rd

corresponds to the ith training sample, yi denotes the label
associated with the ith training sample, and a trainable
parameter c ∈ Rd, which represents a center feature vector
for each class.

Contrastive-center loss is an extension of center loss that
addresses its weakness in inter-class separation. It achieves
this by introducing a penalty loss among each class in
the dataset, which creates a large distance among inter-
class samples in the latent dimension. The formula for the
contrastive-center loss function (Lct−c) is given as follows:

Lct−c = 1
2

n∑
i=1

||xi − cyi ||22
(
∑m

j=1,j ̸=yi
||xi − cj ||22) + θ

(2)

where n represents the number of samples in a mini-batch.
xi ∈ Rd denotes the ith training sample in the mini-batch,
where d is the dimension of the fusion feature vectors. yi

is the label of the ith training sample. m represents the
number of classes in the dataset. The parameter θ is added
to the inter-class distance to prevent division by zero and
to create a margin for easier separation of features. In our
experiments, we adopt the default value of θ = 1.0, which
is recommended in [6].

We apply the contrastive-center loss function to the
fusion feature vectors, which is the concatenation of
the text feature vector and audio feature vector in
SERVER [1], and the output of the fusion module in 3M-
SER [4]. The fully connected layer still employs the cross-
entropy loss (Lce) and is given by the following formula:

Lce = − 1
n

n∑
i=1

ti log(pi) (3)

where n represents the number of samples in a mini-batch,
ti denotes the ground truth label of the ith training sample,
and pi refers to the predicted probability of the ith training
sample using softmax function.

Based on Equations 1, 2 and 3, we have the combination
of the contrastive-center loss function and cross-entropy
loss function as follows:

Ltotal = Lce + Lct−c (4)

And the combination of center loss and cross-entropy
loss is as follows:

Ltotal = Lce + Lc (5)

IV. Implementation Detail

A. Hyper-parameters

We utilize the same settings for both SERVER [1] and
3M-SER [4], except for the inclusion of the contrastive-
center loss function. All models are trained on a Linux
machine (Debian Bookworm) with an Intel(R) Core(TM)
i9-12900K processor, 64GB RAM, and 1 Nvidia GeForce
RTX 3090 graphics Card. Both SERVER and 3M-SER
are trained for 250 epochs with an initial learning rate
of 0.0001, which is divided by 10 every 30 epochs. The
remaining parameters remain unchanged, following the
configuration utilized in SERVER and 3M-SER.

To explore the impact of different loss functions on
the multi-modal model’s performance, we conducted
experiments with five different loss functions: cross-
entropy loss function, center loss function, contrastive-
center loss function, and the combinations of center loss
function with cross-entropy loss function and contrastive-
center loss function with cross-entropy loss function. The
results of these experiments are presented in Section V.
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Fig. 1. The IEMOCAP dataset comprises a diverse distribution of
emotional samples.

B. Dataset
We utilized the Interactive Emotional Dyadic

Motion Capture (IEMOCAP) dataset [7] which is
an acted, multimodal and multispeaker database for our
experiments. The IEMOCAP dataset contains audiovisual
data, such as video recordings, speech recordings, motion
capture of facial expressions, and text transcriptions. To
assess the effectiveness of SERVER [1] and 3M-SER [4]
in conjunction with the contrastive-center loss function,
we investigated the same text and audio samples in this
study. We consider four major classes, namely anger,
happiness, sadness, and neutral, and the distribution of
each class is given in Figure 1.

Fig. 2. Visualization of feature representation learning of cross-
entropy loss function.

V. Experiments
Figures 2, 3 and 4 depict the learned feature

representations using different loss functions. The features
obtained from the cross-entropy loss function in Figure 2
are insufficiently discriminative. There is a high closeness
and overlap among different classes. Conversely, combining
the cross-entropy loss function with the center loss
function in Figure 3 yields more discriminative features.
The different classes are better separated, and the
intra-class variance is reduced. However, even with this

combination, there are still instances of overlapping
features among different classes.

Fig. 3. Visualization of feature representation learning of cross-
entropy loss function combined with center loss function.

In contrast, the combination of cross-entropy and
contrastive-center loss functions in Figure 4 results in a
significant improvement by further reducing intra-class
variance and increasing inter-class variance. The features
learned from the contrastive-center loss function exhibit
enhanced discriminative qualities, with greater separation
among different classes. The intra-class variance is
minimized, while the inter-class variance is amplified. This
is achieved by considering both the similarity among
different classes and the dissimilarity within the same
class. Consequently, the contrastive-center loss function
effectively reduces intra-class variance and amplifies inter-
class variance, leading to highly discriminative features
and improved class separation.

Fig. 4. Visualization of feature representation learning of cross-
entropy loss function combined with contrastive-center loss function.

Table I demonstrates a noteworthy improvement
compared to the previous method SERVER [1]. The
combination of the cross-entropy loss function and center
loss function achieves the highest ACC of 65.81% and
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TABLE I
Performance comparison of different loss functions in

SERVER on IEMOCAP

Method Accuracy (%)
ACC BACC

Center loss 57.34 58.09
Contrastive-center loss 60.25 60.88
Cross-entropy loss 63.00 63.10
Cross-entropy loss + Center loss 65.81 66.58
Cross-entropy loss + Contrastive-center loss 64.82 66.49

TABLE II
Performance comparison of different loss functions in

3M-SER on IEMOCAP

Method Accuracy (%)
ACC BACC

Center loss 76.10 78.01
Contrastive-center loss 78.24 79.52
Cross-entropy loss 79.96 80.66
Cross-entropy loss + Center loss 78.56 79.35
Cross-entropy loss + Contrastive-center loss 80.27 81.44

the highest BACC of 66.58%, surpassing the single loss
function method. Contrary to expectations, replacing
cross-entropy loss does not lead to any improvement
in the model’s performance. The performance decreases
when the cross-entropy loss function is replaced with
these alternative loss functions. Notably, the 3M-SER [4]
model in Table II exhibits considerable performance
enhancement on the IEMOCAP dataset. By leveraging
the combined power of the cross-entropy loss function and
contrastive-center loss function, the model achieves the
highest ACC of 80.27% and the highest BACC of 81.44%.
These aforementioned results underscore the importance
of adapting fusion features to align with the SER task.
By carefully adjusting and fine-tuning the fusion features,
we can effectively enhance the model’s capabilities and
achieve superior results.

Nevertheless, Table II does not show any improvement
by combining the cross-entropy loss function with the
center loss function. Surprisingly, the performance of the
model trained on combined loss functions is even worse
than that of the model using only the cross-entropy loss
function for training 3M-SER. In contrast, Table I shows
enhanced performance in both combination approaches.
This discrepancy can be attributed to the fact that
3M-SER employs attention fusion modules to selectively
choose and fuse relevant features, while SERVER simply
concatenates audio and textual features. The attention
fusion modules in 3M-SER aim to ensure that the
fusion feature leverages only the useful portion of inputs.
Consequently, when an additional loss function is applied
to the fusion module, it may not significantly impact the
other feature if it has small weights in the attention layer.
As a result, the adjustment of feature distances using the
additional loss function has a low impact on the overall
performance of the model.

VI. Conclusion
To sum up, this paper presents a comprehensive

investigation into the impact of different loss functions
on the performance of multi-modal SER. Three distinct
loss functions and two combinations of them are
considered. The experimental results demonstrate that
the combination of loss functions can effectively enhance
the performance of multi-modal SER. Specifically, by
employing the combination of contrastive-center and cross-
entropy loss functions on the IEMOCAP dataset, the
study achieves an impressive ACC of 80.27% and a BACC
of 81.44%. In the future, research endeavors will focus
on exploring alternative combinations of loss functions as
well as pre-trained audio/speech/text models to further
enhance the performance of multi-modal SER.
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