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Abstract—To address the issue of navigation failure caused
by light reflection in real-world navigation scenarios using
inexpensive 2D LiDARs, traditional SAC-based algorithms face
challenges such as inability to train in highly randomized and
sparsely rewarded environments, as well as slow training. In this
paper, we propose a combination of a monocular camera and
a depth estimation model as a substitute for the inexpensive 2D
LiDAR and introduce a variant algorithm called Sharing Encoder
Self-Attention Soft Actor Critic (SESA-SAC) for collision-free
indoor navigation of mobile robots. To improve the efficiency
of robot learning in sparse environments, we collect expert
data from 200 episodes and store them in a replay buffer. We
conduct training by randomly sampling from both exploration
data and expert data, without pre-training. To enhance training
performance, we introduce a channel-wise self-attention structure
and layer normalization in the network to learn better features.
Additionally, we propose a shared feature extractor to achieve
more stable training. Moreover, we conduct training and testing
in GAZEBO, and the experimental results demonstrate that
our proposed SESA-SAC algorithm outperforms traditional SAC
algorithms in terms of convergence speed, stability, and efficiency
for indoor navigation tasks.

Index Terms—real-world, deep reinforcement learning, indoor
navigation

I. INTRODUCTION

In contemporary years, there has been a surge in the
evolution and application of autonomous robotic navigation
technology across a myriad of sectors, including industry, ser-
vice, domesticity, agriculture, and the exploration of unfamiliar
territories. Nevertheless, the algorithms deployed in these
domains predominantly adhere to the conventional mode of
robotic navigation such as A* [1], Dijkstra [2], and Dynamic
Window Approach (DWA) [3] among others. These traditional
autonomous navigation algorithms for robots often necessitate
accurate environmental models and sophisticated planning
mechanisms for successful implementation. Although they fa-
cilitate robotic navigation to a certain degree, they grapple with
numerous unforeseen or unmodelled scenarios in real-world
conditions. These include dynamic obstacles, sensor inaccu-
racies, complex topographies, and diverse lighting conditions,
all of which can culminate in the failure of these traditional
algorithms to navigate correctly. In addition, the traditional
algorithms exhibit significant drawbacks when navigating un-
explored terrains. In such settings, the robots are incapable of

precisely modelling the environment, necessitating reliance on
perception, localization, and the construction of environmental
maps using methodologies such as Simultaneous Localization
and Mapping (SLAM) [4]. Subsequent to this, the robots
conduct path planning and autonomous navigation, hinged
on these environmental models. This sequence of actions
demands considerable computational resources and time, and
in intricate environments, may give rise to modelling and
localization inaccuracies that result in navigation failures.

Traditional reinforcement learning (RL) algorithms are
computational methodologies designed to ascertain optimal
control strategies. However, these conventional RL algo-
rithms confront substantial limitations when dealing with high-
dimensional data, often the kind of output produced by sen-
sors, thereby impeding their capacity to learn efficiently from
such information. In an attempt to ameliorate these drawbacks,
scholars in recent years have explored the fusion of traditional
RL algorithms and deep neural networks, leading to the
emergence of deep reinforcement learning (DRL). This inno-
vative approach is capable of effectively learning the mapping
relationships between high-dimensional sensor features and
robotic actions via deep neural networks. Furthermore, DRL
does not necessitate the use of map information during naviga-
tion, circumventing the intricacy involved in manually creating
environmental models and devising planning algorithms. The
DRL-based navigation algorithm has become one of the key
approaches to solve the autonomous navigation problem due to
its excellent performance. Many recent studies on autonomous
navigation based on deep reinforcement learning are based on
2D LiDAR sensors. For example, Zhou et al. [5] proposed an
autonomous navigation algorithm based on LSTM-DDPG. Jia
et al. [6] proposed an autonomous navigation algorithm based
on GRU-Attention based TD3. Jiang et al. [7] proposed an
autonomous navigation algorithm based on ITD3-CLN, etc.

However, in real-world situations where mobile robots nav-
igate using inexpensive 2D LiDAR, collisions and navigation
failures are common when faced with black or reflective
obstacles. This is mainly due to the robot’s inability to
perceive these obstacles. Navigation with the depth camera
does not present such a problem. This paper contemplates
the prospective viability of large-scale deployment in real-
world contexts. Given the prohibitive expense associated with
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incorporating depth cameras on robots for mass deployment,
we put forth a potential alternative: the combined use of cost-
effective monocular cameras and depth estimation models as
substitutes for depth cameras. This amalgamation enables the
perception of analogous information in both simulated and
real environments. In this study, we introduce an enhanced
algorithm premised on the Soft Actor-Critic framework. By
bolstering the network’s capacity for feature extraction and
standardizing the input images, the proposed algorithm relies
solely on the robot’s forward-facing image data and target
position details to execute end-to-end navigation and obsta-
cle avoidance tasks. This novel algorithm can be trained in
environments characterized by a high degree of stochasticity
and sparse rewards, managing to regulate the robot’s move-
ment within a continuous action space. The efficiency of
this improved algorithm in performing obstacle avoidance and
navigation tasks is substantiated through a series of simulation
experiments. The structure of the paper is as follows: The
succeeding section delves into the body of work pertinent to
this study. In the third segment, we elucidate the proposed
enhancement of the algorithm. The fourth and fifth sections
are devoted to discussing the outcomes of the conducted exper-
iments and providing a synopsis of the research respectively.

II. SOFT ACTOR-CRITIC

The Soft Actor-Critic (SAC) [8] is an off-policy, max-
imum entropy-based reinforcement learning algorithm, pre-
dominantly employed in the resolution of control problems
within continuous action spaces. Being a stochastic policy
algorithm grounded in the principle of maximum entropy, the
SAC boasts superior exploratory capabilities and robustness
in comparison to the Deep Deterministic Policy Gradient
(DDPG) algorithm [9]. It demonstrates greater adaptability
in the face of interference, facilitating smoother adjustments.
An enhancement in training speed is also observed, and the
incorporation of maximum entropy promotes more uniform
exploration within the algorithm. Given its impressive perfor-
mance, the SAC is extensively utilized in the realm of robotic
control. The SAC encompasses two integral network compo-
nents: the Actor and the Critic networks. The latter comprises
dual action-value function networks. The loss function of the
actor network is defined as

Lπ(ϕ) = E
[
α log(πϕ(at|st))−Qθ(st,at)

]
(1)

Where st is selected from the replay buffer, at is determined
by the actor, and α is a tunable temperature coefficient hy-
perparameter. The update of the target action value is defined
as

Qtarget(st,at) = r(st,at) + γ
[
min
i=1,2

Qθ′
i
(st+1,at+1)

− α log
(
πϕ(at+1|st+1

)]
(2)

Where the r(st,at) and st+1 are obtained from the replay
buffer, at+1 is determined by the actor, and Qθ′

i
represents

the target action value network. The loss function of the critic
network is defined as

Lq(θ) = E
[(
Qθ(st,at)−Qtarget(st,at)

)2]
(3)

Where Qθ represents the predicted action value network.

III. PROPOSED METHOD

This paper presents a proposal for a visually-guided mobile
robotic obstacle avoidance navigation system that is under-
pinned by the Sharing Encoder Self-Attention Soft Actor-
Critic (SESA-SAC) algorithm. By integrating a self-attention
network structure, the depth map feature extraction network
has the capacity to distill more beneficial features, thereby
accelerating the efficacy of training in the context of deep
reinforcement learning. The objective of this method is to aug-
ment the capacity of mobile robots to navigate and circumvent
obstacles using exclusively visual information, accomplished
through the learning of superior features.

A. Problem Definition

We use Markov Decision Process (MDP) [10] to define the
problem of mobile robot navigation. Firstly, MDP is composed
of a quintuple M=(S, A, R, P, γ). S represents the set of
states, A represents the set of actions in the decision process,
R represents the reward function, where r (st, at) represents
the immediate reward obtained by performing action at ∈ A
in state st ∈ S. P represents the state transition matrix. γ
represents the discount factor, with γ ∈ [0, 1]. Since we need to
use MDP to solve the problem of mobile robot navigation, we
will set the state space S, action space A, and reward function
R separately.

1) State space S: Given that a solitary depth map possesses
restricted information, we have configured our state setting
to not only perceive the contemporary depth map, but also
amalgamate information derived from antecedent depth maps.
This amalgamation engenders a sequential state input akin
to short-term memory. Utilizing an unoccupied array, we
accumulate the prediction depth maps from It−3 to It. The
resultant input state space is defined as

St = {It−3, It−2, It−1, It}, (4)

where It represents the current depth map state, and It−n

represents the previously observed depth map state by the
robot. with n ∈ {1, 2, 3}

In order to achieve successful navigation, The position
information of the mobile robot and the navigation target point
is defined as

Pt = {dt, θt, vt−1, ωt−1}, (5)

where dt is the distance between the mobile robot and the
navigation target point, θt is the angle between the forward
direction of the mobile robot and the navigation target point,
vt−1 is the linear velocity action previously taken by the robot,
and ωt−1 is the angular velocity action previously taken by the
robot.
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Fig. 1. Feature extraction network architecture.

2) Action space A: The mobile robot has two actions: linear
velocity and angular velocity. The continuous action space is
defined as

At = {vt, ωt}, (6)

where vt represents the current linear velocity of the robot,
with vt ∈ [0, 0.22], and ωt represents the current angular
velocity of the robot, with ωt ∈ [-1, 1].

3) Reward function R: We define a sparse reward function
as

r(st, at) =




α ∗ v − λ ∗ |ω| − δ ∗ do,
rg dt < dβ ,

rc if collision,

(7)

where do is the minimum distance between the robot and
obstacles. If do is less than 1, the calculation is done using
the function 1-do. Otherwise, do is 0. In order to encourage
exploration by the mobile robot and avoid situations where
the robot rotates in place, the absolute difference between the
linear velocity and angular velocity is set as the reward value.
α, λ, and δ are hyperparameters set to 0.5 in this paper. When
the distance between the robot and the navigation target point
is less than the set dβ value, it is considered as reaching the
target point and positive reward is given. If a collision occurs,
negative reward is given. In this paper, dβ is set to 0.2.

B. Network architecture

As depicted in Fig. 1, we put forth a unique network archi-
tecture, introducing a Channel-Wise Self-Attention (CWSA)
network [?] structure subsequent to the initial convolutional
layer in the feature extraction network. Moreover, we in-
corporate Layer Normalization (LN) layers [11] at the input
and intermediate junctures of the network. Considering that
our input states are constituted by four sequential depth
maps, the addition of the CWSA structure facilitates a more
efficacious extraction of pertinent feature information from the
interaction amongst the channels. CWSA is a self-attention
mechanism that operates individually on each channel or
feature map within a neural network, focusing on modelling
the interdependencies amongst channels within a feature map.
This enables the network to learn channel-specific attention

weights, emphasizing the significance of various channels
during the processing of input data. By taking into account
the relationships between channels, the network can effectively
seize global dependencies and augment its proficiency in
extracting relevant information from the input. The application
of LN ensures that the outputs of the intermediate layers of
the neural network maintain a uniform mean and variance,
thereby enhancing their numerical stability. This contributes
to accelerating the convergence of the neural network.

The comprehensive training procedure for the network com-
mences with the collection of RGB images via the robot’s
front-facing camera. These RGB images are subsequently
transmuted into depth maps utilizing a Depth Estimation
Model. The depth maps are accumulated, thereby producing a
sequence of four successive predicted depth maps that serve
as the input state. This input state undergoes normalization
and is then introduced into the feature extraction network.
Following a passage through a Layer Normalization (LN)
layer, the input state is incorporated into the initial convo-
lutional network layer. The output features derived from this
layer traverse another LN layer and are further manipulated by
the Channel-Wise Self-Attention (CWSA) structure, resulting
in the extraction of more intricate features. These distilled
features traverse another LN layer and are inputted into the
subsequent convolutional layer. This procedure is replicated
until the ultimate state features are extracted. All convolutional
layers, barring the CWSA structure, employ the Rectified
Linear Unit (ReLU) activation function.

After extracting feature information through the feature
extraction network, the features are inputted into the actor-
critic network structure as depicted in Fig. 2. We share a
single feature extraction network between the actor and critic
networks. In the actor network, the features extracted by
the feature extraction network are further compressed and
extracted through a fully connected layer, then concatenated
with position information features also extracted from a fully
connected layer. The concatenated features are inputted into
two additional fully connected layers, and in the end, the mean
and variance related to the action are outputted. The linear and
angular velocity actions under the current state are calculated
using the reparameterization technique. In the critic network,
the features extracted through the feature extraction network
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Fig. 3. Training environment.

are further compressed and extracted via a fully connected
layer. These features are then concatenated with the current
action and position information features. The concatenated
features are input into two additional fully connected layers
to predict the Q-value associated with the current action
in the current state. During the updating process, only the
critic network is used to update the parameters of the feature
extraction network.

Within the feature extraction network, four convolutional
layers are defined with the following parameters: the first layer
has an input size of 3, an output size of 32, a kernel size of
3, and a stride of 2; the subsequent three layers all possess an
input size of 32, an output size of 32, a kernel size of 3, and a
stride of 1. A fully connected layer, consisting of 128 neurons
and employing the ReLU activation function, is designed for
position information extraction. In the actor-critic network,
two fully connected layers are incorporated for the extraction
of features and prediction. These layers are characterized by
800 and 600 neurons respectively, both utilizing the ReLU
activation function.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

The efficacy of the proposed algorithm is assessed in this
study through conducting obstacle avoidance and navigation

trials using a mobile robot in GAZEBO. Three distinct exper-
iment sets were performed: the traditional SAC algorithm, the
traditional SAC algorithm supplemented with input normaliza-
tion, and the proposed SESA-SAC algorithm. The traditional
SAC algorithm utilized a four-layer convolutional network,
with parameters aligning with those applied in the convolu-
tional layers of the SESA-SAC. Nonetheless, in the traditional
SAC algorithm, the position information in the Actor-Critic
network was not subjected to feature extraction; it was directly
concatenated with the extracted sequential depth map features.
The remaining parameters for both the traditional SAC and the
proposed SESA-SAC were identical, as illustrated in Table
I. The experimental setup comprised an NVIDIA RTX 2070
SUPER GPU, Robot Operating System (ROS: Melodic), and
the GAZEBO simulator. The robot’s training and testing were
performed within the GAZEBO simulator. For the purpose of
the experiments, the turtlebot3 burger robot was deployed in
the test environment, as depicted in Fig.3.

TABLE I
PARAMETERS

SAC SESA-SAC
learning rate 3e-4 3e-4

gamma 0.99 0.99
tau 5e-3 5e-3

log std min -20 -20
log std max 2 2
buffer size 100000 100000
batch size 128 128

The mobile robot obtains the current environmental RGB
image through its front-mounted camera. Subsequently, a
depth estimation model is employed to convert this RGB
image into a predicted depth map. The deep reinforcement
learning network’s input state is a sequence comprised of four
consecutive predicted depth maps. The DistDepth network
[12], which is pre-trained, serves as our depth estimation
model, offering precise predictions of depth maps derived from
singular RGB images. Given our usage of a sparse reward
function, we accelerate training by initially accumulating data
via an expert agent across 200 episodes and storing this in a
replay buffer. However, the robot was not subjected to pre-
training. Rather, following data gathering through the expert
agent, the agent that necessitates training persists in exploring
the environment with its original policy, collecting additional
data. Training then proceeds through random samples obtained
from the replay buffer. Both the traditional SAC algorithm and
the algorithm proposed within this study adhere to identical
training methodologies. The robot, within its environment, is
required to discern obstacles using visual information, and
learn to successfully navigate towards the target point while
evading these obstacles. In instances where the robot collides
with an obstacle during training, the positions of the robot,
the obstacle, and the target point are all randomly reset, after
which the robot recommences exploration. With an increase
in collected data and training iterations, the robot gradually
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learns to circumnavigate obstacles and navigate successfully
to the target point.

B. Experimental Result

In the training setup, the maximum number of steps per
episode is set to 500. If the episode exceeds 500 steps, the
environment is reset.

As shown in Fig. 4, this is the result graph obtained
during the training process, with the results recorded after
each episode. For performance comparison, the training results
in the graph represent the average reward value every 10
episodes. From the training result graph, we can see that
the traditional SAC algorithm without input normalization
fails to train successfully. The traditional SAC algorithm with
input normalization, on the other hand, achieves successful
training but exhibits significant fluctuations in the obtained
reward values. In contrast, our proposed SESA-SAC algorithm
demonstrates greater stability compared to the traditional SAC
algorithm with input normalization and achieves higher reward
values.

As shown in Fig. 5, this is the result graph obtained during
the testing process. We conducted testing by performing 10
episodes every 5,000 steps, and the test results represent the
average value of those 10 episodes. From the testing result

graph, we can observe that our proposed SESA-SAC algorithm
achieves a reward value of 50 or above right from the begin-
ning of training. The traditional SAC algorithm, on the other
hand, fails to train successfully. The traditional SAC algorithm
with input normalization starts to converge and reaches a
reward value of 50 or above at around 25,000 steps.The
proposed algorithm achieved an average reward value of 58.08,
while the traditional SAC algorithm resulted in -112.62. The
traditional SAC algorithm with input normalization yielded a
value of 41.72.

V. CONCLUSION

This study introduces a novel algorithm, Sharing Encoder
Self-Attention Soft Actor Critic (SESA-SAC), based on Soft
Actor Critic (SAC), designed for application in obstacle
avoidance navigation systems. The algorithm enhances its
capacity for feature extraction through the integration of a
Channel-Wise Self-Attention (CWSA) structure within the
feature extraction network and the implementation of layer
normalization at the neural network’s input and output stages.
A shared feature extraction network is utilized by the actor and
critic networks, with the critic network tasked with updating
the feature extraction network, contributing to an efficient and
stable training process. This novel methodology successfully
navigates training in environments characterized by extensive
randomization and sparse reward distribution. The validation
of the proposed approach is accomplished experimentally
within the GAZEBO simulator, utilizing identical parameters
and training environments as those employed by the traditional
SAC algorithm. The results conclusively demonstrate that
our proposed approach surpasses both the traditional SAC
algorithm and other variant algorithms, achieving the task
of robot obstacle avoidance navigation with commendable
efficiency.
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