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Abstract—Recently, deep learning-based (DL) automatic mod-
ulation classification (AMC) has been extensively studied in
cooperative and non-cooperative communication contexts such as
cognitive radio and spectrum surveillance. One of the drawbacks
of DL-based AMC is its susceptibility to anomalous or interfering
signals. In this paper, we propose a DL-based anomaly detection
for AMC, utilizing an autoencoder to process the in-phase
and quadrature components of a received signal. In order to
detect anomalies, we employ a hybrid loss, a combination of the
autoencoder’s reconstruction loss and the Mahalanobis distance
of the latent space embedding of the training vector and each
input instance. Through computer simulations, we show that
the proposed model has superior detection performance with
less computational complexity compared to the conventional DL-
based model.

Index Terms—Anomaly Detection, Autoencoder, Automatic
Modulation Classification

I. INTRODUCTION

Automatic modulation classification (AMC) is a task that
identifies the modulation type of the received signal without
any prior knowledge of the communication parameters. AMC
plays a significant role in cooperative and non-cooperative
communication contexts such as cognitive radio and spectrum
surveillance. Recently, deep learning (DL) has been exten-
sively applied in AMC, and it is reported in many places in
the literature that DL-based AMC has superior classification
performance compared to traditional AMC methods such as
feature-based AMC [1]–[3]. However, the classification perfor-
mance of the DL-based AMC can be degraded by unexpected
anomalies. Additionally, anomalies in the communication sig-
nals can significantly impact AMC accuracy and may have
broader consequences on overall network security.

Therefore, detecting anomalies is crucial to the task of AMC
in both cooperative and non-cooperative contexts to ensure bet-
ter performance and reliable communication while efficiently
managing and utilizing the radio frequency spectrum [4], [5].
However, despite the critical concerns raised by the presence
of anomalies in communication signals, little research has been
conducted on detecting anomalies in this field. In [6], the
vector extracted from the final fully connected layer of pre-
trained convolutional neural network (CNN) models trained
with constellation images were used for anomaly detection.
However, due to the overhead involved in converting in-
phase and quadrature (IQ) sequences to images, this approach
introduces a noticeable increase in computational complexity.

In this paper, we propose a DL-based anomaly detection
for AMC by utilizing a hybrid loss that incorporates the
reconstruction loss and the Mahalanobis distance within the
latent space embedding of an autoencoder. As inputs to the
model, we use the received IQ sequence. Through computer
simulations, we show that the model outperforms the conven-
tional model in terms of detection metrics while also exhibiting
significantly lower computational complexity, validating its
effectiveness for practical applications.

The rest of this paper is organized as follows: Sections II and
III describe the DL-based anomaly detection and simulation
results, respectively, and Section IV concludes the paper.

II. DL-BASED ANOMALY DETECTION

Fig. 1: Mahalanobis-based Autoencoder Architecture

Figure 1 depicts an illustration of the Mahalanobis-based
autoencoder (MAE) model’s architecture. The model con-
sists of two primary components: an autoencoder and the
Mahalanobis distance estimator. The autoencoder comprises
three parts, namely the encoder, bottleneck layer, and decoder,
and is designed to learn the task of data compression while
simultaneously minimizing reconstruction loss. This allows it
to map the input data into a lower-dimensional latent space at
the bottleneck layer and then reconstruct it back to its original
form. The encoder, decoder, and reconstruction loss of the
autoencoder can be expressed mathematically as follows

z = g1ϕ(g2ϕ(g3ϕ(· · · gnϕ(x)))) (1)

x′ = f1θ(f2θ(f3θ(· · · fnθ(z)))) (2)
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ζ(x, x′) =
1

N

N∑
i=1

(x(i) − x′(i))2 (3)

where x, x′, z,N, giϕ, and fiθ are the input, output (recon-
structed input), bottleneck layer vector, number of samples,
encoder, and decoder weight matrices, respectively. On the
other hand, the Mahalanobis distance estimator utilizes the
Mahalanobis distance metric to measure the dissimilarity be-
tween the encoded data representations and a learned distribu-
tion of normal and anomalous data instances. The Mahalanobis
distance can be expressed as

ψ(ztrain, z) =

√
(z − µ̂ztrain)

T Σ̂−1
ztrain(z − µ̂ztrain) (4)

where µ̂ztrain
and Σ̂ztrain

are the mean vector and covariance
matrix of the encoded training dataset distribution, respec-
tively. A high Mahalanobis distance between a point and the
distribution indicates a higher likelihood of the point being
an anomaly. Therefore, in this paper, to effectively detect
anomalies, we combine the autoencoder’s reconstruction loss
with the Mahalanobis distance between the encoded training
dataset distribution and each input data instance, forming a
hybrid loss, which can be mathematically expressed as

ξ = α.ψ(ztrain, z) + β.ζ(x, x′) (5)

where α and β are parameters estimated using a validation
set of in-distribution samples. α and β can be mathematically
expressed as

α =
1

σ(ψ(ztrain, zvalid))
β =

1

σ(ζ(xvalid, x′
valid))

(6)

where σ(ψ(ztrain, zvalid)) and σ(ζ(xvalid, x
′
valid)) denotes the

standard deviation of the Mahalanobis distance between the
encoded training and validation dataset distribution and the
standard deviation of the reconstruction loss on the validation
dataset. This normalization prevents either of the components
constituting the hybrid loss from dominating the overall hybrid
loss. With an IQ sequence as input to the MAE model, we
anticipate that anomalous and normal datasets will result in
high and low hybrid loss values, respectively. Therefore, we set
a threshold γ to detect anomalous data. When the hybrid loss
value is higher than γ, the input data is declared an anomaly,
and vice versa when the loss is lower.

III. SIMULATION RESULTS

In this section, we show the anomaly detection performance
through computer simulations. The dataset for anomaly de-
tection is subdivided into two: the normal and anomalous
datasets. In this paper, we consider the normal dataset which
comprises 3 modulation schemes, including binary phase shift
keying (BPSK), quadrature phase shift keying (QPSK), and 8-
phase shift keying (8PSK), and the anomalous dataset which
comprises 2 modulation schemes, including 16-quadrature
amplitude modulation (16QAM) and 64-quadrature amplitude
modulation (64QAM). For both datasets, we consider an

additive white Gaussian noise (AWGN) channel with a signal-
to-noise ratio (SNR) range of -5 dB to 10 dB considering a 1
dB interval. We generate the dataset comprising 1000 samples
for each SNR per modulation scheme, resulting in a dimension
of (48000× 1000) for the normal dataset and (32000× 1000)
for the anomalous dataset, respectively.

To achieve higher convergence and overall performance
while training deep learning (DL) models, the input dataset
must be balanced. Therefore, to prepare our dataset for train-
ing, we first split it along its real and imaginary parts and
then concatenate it along its row, resulting in the normal
and anomalous datasets of dimensions (48000 × 2000) and
(32000×2000), respectively. Next, we scale the concatenated
dataset using a min-max scaler with a minimum and maximum
value of 0 and 1, respectively. After scaling, the normal
dataset was divided into training, validation, and test datasets
with dimensions of (32000 × 2000), (6000 × 2000), and
(10000 × 2000), respectively. These datasets serve as inputs
to the MAE model.

Simulations were conducted on an NVIDIA GeForce RTX
A6000 GPU with 48GB of VRAM using Python 3.9.13,
PyTorch 2.0.1+ Cuda117. The tabulated architecture and hy-
perparameter details for our model are provided in Table I and
Table II, respectively. As seen in Table I, the model is a very
simple model with only 3 layers at the encoder and decoder.

TABLE I: Model Architecture

Layer Name Layer Size

Encoder

Input Layer 1× 2000
Hidden Layer 1 1× 1240
Hidden Layer 2 1× 245
Hidden Layer 3 1× 84

Decoder

Hidden Layer 4 1× 84
Hidden Layer 5 1× 245
Hidden Layer 6 1× 1240
Output Layer 1× 2000

Bottleneck Bottleneck Layer 1× 12

TABLE II: Hyperparameters

Hyperparameter Value

Learning Rate 3.33e−5

Batch Size 128
Number of Epochs 35
Optimizer Adam
Activation function LeakyReLU
Loss MSE

Figure 2 depicts the histogram distributions of the normal
and anomalous datasets for the models. The histogram for
the MAE and ResNet50-based CNN model in [6] are given
in Figure 2a and 2b, respectively. And Figure 3 depicts
the AUROC of the MAE and ResNet5-based CNN in [6].
To obtain the decision metrics, we first generate the hybrid
loss distribution histograms from normal and anomalous test
datasets as shown in Figure 2, estimating the AUROC as
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shown in Figure 3. Subsequently, we measured the distance
between the neutral line (the diagonal line connecting [0, 0]
and [1, 1] points) and the coordinates of the true positive
rate (TPR) and false positive rate (FPR) obtained from the
AUROC analysis. We obtain the optimal value of the threshold
γ when the distance attains the highest value. Using this γ, we
compute other detection metrics to compare the performance
between the proposed MAE and the ResNet50-based CNN in
[6]. Table III presents various detection metrics including TPR,
true negative rate (TNR), positive prediction value (PPV), false
negative rate (FNR), and F1-score. As seen in Table III, the
detection performance of the proposed model outperforms that
of the ResNet50-based CNN in [6] for all detection metrics.
The high detection accuracy of the proposed model can be
attributed to the use of the compressed vector at the bottleneck
layer, which contains salient features of the dataset for loss
estimation.

(a) MAE Model (b) ResNet50-based CNN Model

Fig. 2: Histogram distributions of the normal and anomalous
datasets for the Models.

Fig. 3: AUROC of MAE and ResNet50-based CNN Models

TABLE III: Model Comparison using Detection Metrics

Model TPR TNR PPV FNR F1-Score AUROC

MAE 0.971 0.988 0.988 0.029 0.979 0.997
ResNet50 0.957 0.867 0.852 0.043 0.902 0.974

We further compare the computational complexity of the
ResNet50-based CNN in [6] and the MAE model. The
ResNet50 model comprises three processes that mainly con-
stitute its complexity: image generation, PCA computation,
and Mahalanobis distance computation. On the other hand,
the proposed MAE basically comprises only one process that
constitutes its complexity, which is the computation of the
Mahalanobis distance. Therefore, the proposed MAE model
has much less computational complexity than the ResNet50-
based CNN model in [6].

IV. CONCLUSION

In this paper, we proposed a DL-based anomaly detection
for AMC. The DL model combines the Mahalanobis distance
within the latent space embedding of an autoencoder, along
with the autoencoder reconstruction loss, to efficiently detect
anomalies. Through computer simulations, we showed that
the proposed model outperformed the conventional DL-based
method across all performance metrics, including TPR, TNR,
PPV, FNR, F1-score, and AUROC, while maintaining a lower
level of computational complexity.
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