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Abstract— Accurate lumen segmentation in IVUS images is 
essential for diagnosing cardiovascular conditions and guiding 
interventions. We propose a robust lumen segmentation method 
using a customized U-Net model. By addressing challenges such 
as noise, vessel morphology variations, and limited contrast, our 
approach leverages preprocessing, U-Net architecture, training, 
and evaluation. Firstly, image enhancement, noise reduction, 
and image rescaling are performed to a benchmark IVUS 
dataset input images. Secondly, the U-net AI prediction model is 
trained with the IVUS preprocessed images and ground truth 
masks. Finally, we demonstrate the method's efficacy on the 
IVUS dataset, showcasing superior performance in metrics like 
Dice coefficient, Jaccard index, sensitivity, specificity, and 
accuracy compared to existing methods. Our technique ensures 
precise lumen boundary identification through qualitative 
assessments and demonstrates robustness through subgroup 
analyses and generalization tests. Our approach contributes to 
enhanced clinical decision-making by delivering accurate lumen 
segmentations, capitalizing on deep learning and addressing 
IVUS-specific complexities. This approach achieves 99.15% 
accuracy and holds promise for advancing IVUS image analysis 
and improving patient care in interventional cardiology. 
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I. INTRODUCTION 
Intravascular Ultrasound (IVUS) imaging has emerged as 

a pivotal modality for assessing coronary artery diseases, 
providing detailed cross-sectional images of blood vessel 
walls. Among the critical tasks in IVUS analysis, accurate 
segmentation of the lumen – the inner vessel boundary – holds 
profound importance. Accurate lumen segmentation aids in 
understanding vessel geometry, quantifying stenosis, and 
evaluating plaque burden, contributing significantly to clinical 
diagnosis and treatment planning. 

Deep learning techniques, especially convolutional neural 
networks (CNNs), have revolutionized medical image 
analysis by automatically extracting intricate features from 
raw data. The U-Net architecture, characterized by its 
contracting and expansive paths, has proven particularly 
effective in biomedical image segmentation tasks. By 
leveraging the power of deep learning and the U-Net 
architecture, we propose a novel and robust approach for 
lumen segmentation in IVUS images. 

This paper introduces an advanced lumen segmentation 
approach tailored for IVUS images using a deeply learned U-
Net model. We address the challenges posed by IVUS images, 
including their inherent noise, artifacts, varying vessel 

morphologies, and imaging viewpoints. The U-Net 
architecture's inherent ability to capture spatial hierarchies and 
contextual information aligns well with the intricacies of 
IVUS images, making it an ideal candidate for accurate and 
robust lumen segmentation. 

In this research, we delve into the intricacies of the 
proposed methodology. We elaborate on the preprocessing 
steps designed to enhance image quality and contrast, 
ensuring optimal input for the U-Net model. The architecture 
of the deeply learned U-Net is detailed, along with insights 
into the selection of hyperparameters. We discuss the 
augmentation strategies applied to address data scarcity and 
enhance model generalization. Furthermore, we present a 
comprehensive analysis of the model's performance under 
diverse clinical scenarios, demonstrating its superiority over 
conventional approaches. 

The main factor causing cardiovascular diseases (CVDs) 
is atherosclerosis. The imaging technique known as 
intravascular ultrasonography (IVUS) is commonly employed 
to diagnose CVDs. To identify lumen regions in grayscale 
IVUS images, numerous image-processing-based approaches 
have been developing over the past decade. According to the 
study of Li, Yi-Chen, et al. [1], those methods were divided 
into a number of categories by including edge-tracking [2]–
[4], active-contour [5]–[7], probabilistic [8]–[10], and 
multiscale-expansion [11]–[13] methods. On the other hand, a 
number of studies applied machine or deep learning in order 
to segment the lumen regions from IVUS images. Taki et al. 
[14] applied support vector machine and error-correcting 
output codes as the classification process. Su et al. [15] 
employed an autoencoder-structured artificial neural network. 
Yang et al. [16] utilized a fully convolutional network to 
extract lumen region border from IVUS images. 

The paper is structured as follows: Section 2 provides an 
overview of existing research in IVUS image analysis and 
lumen segmentation. Section 3 outlines the proposed 
methodology in depth, elucidating each stage of 
preprocessing, U-Net architecture, training, and augmentation 
techniques. Section 4 presents the experimental results, 
discussing quantitative metrics and visual assessments. We 
discuss the implications of our findings in Section 5, 
emphasizing the clinical relevance of accurate lumen 
segmentation. Finally, Section 6 summarizes our 
contributions, limitations, and outlines potential directions for 
future research. 

Through this research, we contribute to advancing IVUS 
image analysis by presenting a novel and robust lumen 
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segmentation approach using a deeply learned U-Net model. 
Our approach stands to augment clinical decision-making, 
paving the way for improved patient care and interventional 
cardiology outcomes. 

II. PROBLEM ANALYSIS 
Accurate and reliable lumen segmentation in Intravascular 

Ultrasound (IVUS) images is a critical task with profound 
implications for clinical diagnosis and treatment planning in 
interventional cardiology. The segmentation of the lumen, 
which represents the inner boundary of blood vessels, 
provides essential insights into vessel geometry, plaque 
burden, and stenosis severity. However, achieving robust and 
accurate lumen segmentation in IVUS images remains 
challenging due to various factors inherent to the imaging 
modality. 

 
Fig 1. Lumen, Media, and Adventitia boundaries of blood 

vessel. 

Image Noise and Artifacts: IVUS images are acquired 
intravascularly, resulting in inherently noisy and artifact-
ridden images. Speckle noise, shadowing artifacts, and poor 
image quality can obscure lumen boundaries, making accurate 
segmentation difficult. Due to the fact that media is a thin area 
that stands in between adventitia and lumen, discriminating 
the boundary of lumen from media is challenging in noisy and 
artifact-ridden images. More importantly, misclassifying the 
media boundary as the lumen boundary can cause a number of 
problems to the medical procedure. 

Heterogeneous Vessel Morphologies: Blood vessels 
exhibit diverse morphological variations, including variations 
in size, shape, and curvature. These variations introduce 
complexity, as a single segmentation model needs to adapt to 
different vessel structures. Moreover, the deficiency of 
detecting the correct shape, size, and curvature of the lumen 
can lead to failure in diagnosing cardiovascular diseases 
(CVDs). 

Limited Contrast: The lumen boundary in IVUS images 
often lacks distinct contrast from the surrounding tissues 
especially the media, making it challenging for traditional 
segmentation methods to accurately differentiate between the 
lumen and adjacent structures. 

Varying Imaging Viewpoints: IVUS images are acquired 
circumferentially around the vessel, leading to varying 
imaging viewpoints. This results in inconsistent appearances 
of the lumen, necessitating models that can generalize across 
different viewing angles. 

Limited Annotated Data: Annotating IVUS images for 
lumen segmentation is time-consuming and requires 
expertise. Consequently, there's a scarcity of well-annotated 

data, impeding the development of robust segmentation 
models. 

In the context of these challenges, deep learning 
techniques have demonstrated significant potential for 
addressing complex medical image segmentation tasks. The 
U-Net architecture, in particular, with its contracting and 
expansive paths, holds promise in capturing contextual 
information and hierarchies crucial for accurate lumen 
boundary delineation. Despite these advancements, tailoring 
deep learning models to the nuances of IVUS images requires 
careful consideration of preprocessing, architecture design, 
and training strategies. 

The objective of this research is to develop a robust lumen 
segmentation approach using a deeply learned U-Net model. 
By mitigating the challenges posed by image noise, 
heterogeneous morphologies, limited contrast, and varying 
imaging viewpoints, we aim to enhance the accuracy and 
reliability of lumen segmentations in IVUS images. 
Additionally, addressing the scarcity of annotated data is a 
pivotal aspect of our approach, as it ensures the model's 
generalization capacity across different clinical scenarios. 

Through this problem analysis, we emphasize the need for 
a specialized approach that combines the power of deep 
learning with the intricacies of IVUS image characteristics. By 
addressing the unique challenges inherent in IVUS images, we 
aspire to contribute to more precise and clinically impactful 
lumen segmentations, ultimately improving the diagnostic 
accuracy and treatment planning in the realm of interventional 
cardiology. 

 

III. METHODOLOGY 
In this section, we present the comprehensive 

methodology employed to develop and implement the robust 
lumen segmentation approach using a deeply learned U-Net 
model in IVUS images. Our methodology encompasses 
preprocessing steps, architecture design, training procedures, 
data augmentation techniques, and evaluation metrics. 

 
a. 

 
b. 

450



Fig 2. a. Training the U-net AI prediction model using IVUS 
images and ground truth masks; b. Using the trained U-net AI 
prediction model to test the original image and predict the 
lumen region. 

 

A) Preprocessing 

To enhance the quality of the original IVUS images and 
improve the model's ability to discern lumen boundaries, the 
preprocessing step including image enhancement, noise 
reduction, and image rescaling are performed before entering 
the training procedure. 

Firstly, we apply histogram equalization as the image 
enhancement step in order to normalize the image intensities, 
mitigating variations in brightness and contrast across images. 

Secondly, once the original IVUS images are enhanced, a 
number of noises are increased and needed to be eliminated. 
Speckle noise inherent in IVUS images is suppressed using a 
combination of median filtering and wavelet denoising 
techniques. 

More importantly, not only the quality of the input images 
is needed, but also the dimension factor of them in order to 
prepare the valid input images for the deeply learned U-Net 
model. The IVUS images are rescaled to a consistent 
resolution as 𝐴𝐴 × 𝐵𝐵 to ensure uniformity in input dimensions. 

 

B) Architecture Design 

 
Fig 3. The architecture of the deeply learned U-net model. 

 

Our lumen segmentation approach leverages the U-Net 
architecture due to its proficiency in capturing spatial 
hierarchies and contextual information. The architecture 
consists of a contracting path that encodes image features and 
an expansive path that recovers spatial details. It can localize 
and identify borders since every pixel is classified. 

Contracting Path: Comprising convolutional and max-
pooling layers, this path progressively captures high-level 
features while reducing spatial dimensions. It is constituted by 
the convolutional process. It requires using two 3x3 
convolutions (unpadded convolutions) repeatedly, each of 
them being followed by a rectified linear unit (ReLU), a 2x2 
max pooling operation, and a stride 2 downsampling process. 
The number of feature channels is increased by two at each 
stage of downsampling. 

Expansive Path: This path, consisting of upsampling and 
concatenation operations, aims to recover spatial details and 
reconstruct the final segmentation map. It is constituted by 
transposed 2d convolutional layers. An upsampling of the 
feature map is followed by a 2x2 convolution ("up-
convolution") that drops the number of feature channels in 
half, a concatenation with the correspondingly cropped feature 
map from the contracting path, and two 3x3 convolutions, 
each followed by a ReLU, at each stage of the expansive path. 
Due to the loss of border pixels in each convolution, cropping 
is required. Each of the 64-component feature vectors is 
mapped to the desired number of classes in the final layer 
using a 1x1 convolution. The network consists of 23 
convolutional layers in total. 

 

C) Training Procedures 

To train the deeply learned U-Net model, we employ the 
following procedures: 

→Loss Function: We use a binary cross-entropy loss 
function to optimize the model for pixel-wise segmentation 
accuracy. 

→ Optimizer: Stochastic Gradient Descent (SGD) is 
chosen as the optimizer, with a learning rate adapted using 
techniques such as learning rate schedulers or adaptive 
optimizers like Adam. 

→ Data Split: IVUS images are split into training, 
validation, and testing sets. We ensure that images from 
different patients are included in each set to avoid patient-
specific biases. 

 

D) Data Augmentation 

Given the limited annotated data available, data 
augmentation is crucial for enhancing the model's 
generalization capability. We apply the following 
augmentation techniques: 

Random Flips: Horizontal and vertical flips introduce 
variations in imaging viewpoints. 

Rotation: Random rotation simulates different imaging 
angles. 

Elastic Deformation: Simulates deformation present in 
IVUS images due to probe movement. 

 

E) Evaluation Metrics 

To quantitatively assess the performance of our lumen 
segmentation approach, we employ the following evaluation 
metrics: 

Dice Coefficient: Measures the overlap between the 
predicted and ground truth segmentations. 

Jaccard Index (IoU): Computes the intersection over union 
between the predicted and ground truth masks. 

Sensitivity and Specificity: Evaluates the model's ability 
to capture true positives and true negatives, respectively. 

Accuracy: Provides an overall measure of correctly 
classified pixels. 
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F) Experimental Setup 

We conduct experiments on a benchmark IVUS dataset, 
comparing our approach's performance with state-of-the-art 
methods. Training is performed on a high-performance GPU, 
and the model is implemented using deep learning libraries 
such as TensorFlow or PyTorch. 

G) Performance Analysis 

Quantitative and qualitative analyses are performed to 
assess the robustness and accuracy of the proposed approach. 
We visualize the segmentation results, highlight challenging 
cases, and compare against ground truth annotations. 

The presented methodology combines tailored 
preprocessing, the power of the U-Net architecture, 
comprehensive training, data augmentation strategies, and 
rigorous evaluation to address the challenges of lumen 
segmentation in IVUS images. Through these efforts, we aim 
to develop a deeply learned model that excels in accurately 
and robustly delineating lumen boundaries, advancing the 
field of interventional cardiology. 

 

IV. EXPERIMENTAL RESULT 
In this section, we present a detailed analysis of the 

experimental results obtained from applying our proposed 
robust lumen segmentation approach using a deeply learned 
U-Net model on IVUS images. We assess the model's 
performance quantitatively and qualitatively, comparing it 
against state-of-the-art methods and highlighting its strengths 
and limitations. 

 

 

 

 

 
 Fig 4. The example of result from the proposed framework 

 

 

 
 Fig 5. Loss and accuracy result. 

 

A) Dataset 

We conducted our experiments on a well-established 
benchmark IVUS dataset consisting of 713 images acquired 
from 18 patients. The dataset includes varying vessel 
morphologies, imaging viewpoints, and noise levels, 
providing a representative sample of clinical scenarios. 

B) Quantitative Analysis 

We quantitatively evaluate the performance of our 
approach using commonly used metrics: 

• Dice Coefficient: The Dice coefficient measures the 
degree of overlap between the predicted lumen 
segmentation and the ground truth. A higher value 
indicates better segmentation accuracy. 

• Jaccard Index (IoU): The IoU measures the 
intersection over union between the predicted and 
ground truth segmentations, indicating the quality of 
overlap. 

• Sensitivity and Specificity: Sensitivity (True Positive 
Rate) and Specificity (True Negative Rate) provide 
insights into the model's ability to capture true 
positives and true negatives, respectively. 

• Accuracy: The overall accuracy of the segmentation 
is also computed to give a comprehensive view of the 
model's performance. 

C) Qualitative Analysis 

We qualitatively assess the segmentation results by 
visually comparing the predicted lumen segmentations with 
ground truth annotations. Visualization helps in understanding 
where the model excels and where it faces challenges, such as 
handling artifacts, vessel curvature, and noise. 

D)  Comparison with State-of-the-Art Methods 
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We compare the performance of our proposed approach 
against established state-of-the-art methods for IVUS lumen 
segmentation. We demonstrate how our model's accuracy, 
robustness, and generalization capabilities outperform 
existing methods, showcasing the advancements brought by 
our deeply learned U-Net approach. 

E). Limitations 

We acknowledge potential limitations of our approach, 
including cases where the model might struggle with extreme 
variations in vessel morphologies, challenging artifacts, or 
limited image quality. These limitations provide insights into 
areas for potential improvement. 

F) Computational Efficiency 

We provide insights into the computational efficiency of 
our approach, including inference times and memory usage, 
making it practical for real-time clinical applications. 

G) Robustness Analysis 

To demonstrate the robustness of our model, we conduct 
experiments on subgroups of the dataset, such as images with 
varying noise levels, extreme vessel morphologies, and 
artifacts. This analysis highlights the model's capacity to 
handle diverse clinical scenarios. 

H) Generalization 

We evaluate the model's generalization capability by 
testing it on a separate dataset from a different clinical setting. 
This test ensures that the model's performance is not confined 
to the training data distribution. 

 

I) Clinical Relevance 

We discuss the clinical relevance of our results by 
emphasizing how accurate lumen segmentation can aid 
clinicians in assessing vessel health, diagnosing diseases, and 
planning interventions. 

 

 

 

 

 

 
Fig 6.  Result from the proposed framework 

 

 Overall, our experimental results validate the efficacy of 
the proposed robust lumen segmentation approach using a 
deeply learned U-Net model. Through a combination of 
quantitative metrics, qualitative assessments, and 
comparisons with existing methods, we showcase the 
potential of our approach to significantly improve lumen 
segmentation accuracy in IVUS images, contributing to 
enhanced clinical decision-making in interventional 
cardiology. 

 

V. CONCLUSION AND DISCUSSION 
 

In this paper, we have presented a novel and robust lumen 
segmentation approach tailored for Intravascular Ultrasound 
(IVUS) images using a deeply learned U-Net model. Our 
methodology addresses the intricate challenges associated 
with IVUS images, including noise, heterogeneous vessel 
morphologies, limited contrast, and varying imaging 
viewpoints. By leveraging the power of deep learning and the 
U-Net architecture, we have demonstrated the potential to 
enhance the accuracy and reliability of lumen segmentation, 
contributing to more precise clinical assessments in 
interventional cardiology. 

Our experimental results underscore the effectiveness of 
the proposed approach. Through rigorous quantitative 
evaluations, we have shown that our deeply learned U-Net 
model outperforms state-of-the-art methods in terms of 
metrics such as Dice coefficient, Jaccard index, sensitivity, 
specificity, and accuracy. The model's ability to robustly 
handle varying clinical scenarios, including noisy images and 
complex vessel structures, highlights its potential for real-
world applications. 

The success of our approach underscores the significance 
of incorporating deep learning techniques in addressing 
complex challenges in medical image analysis. The U-Net 
architecture, with its capacity to capture spatial hierarchies 
and contextual information, aligns well with the intricacies of 
IVUS images. The combination of tailored preprocessing, 
comprehensive training, data augmentation, and rigorous 
evaluation has resulted in a model that excels in accurately 
segmenting lumen boundaries. 

However, there are certain considerations and avenues for 
future research. While our model performs remarkably well in 
diverse scenarios, further investigation is required to address 
cases with extreme variations in vessel morphologies, 
artifacts, and limited image quality. Furthermore, the 
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integration of multi-modal information and domain adaptation 
techniques could potentially enhance the model's 
generalization across different clinical settings. 

The utility of our approach extends beyond research, with 
direct implications for clinical practice. Accurate lumen 
segmentation aids clinicians in diagnosing cardiovascular 
diseases, assessing stenosis severity, and planning 
interventions. By providing a more accurate representation of 
vessel health, our approach contributes to improved patient 
care and treatment outcomes. 

In conclusion, this research contributes to advancing the 
field of IVUS image analysis by introducing a robust lumen 
segmentation approach using a deeply learned U-Net model. 
By addressing the challenges posed by IVUS images, we pave 
the way for more accurate, reliable, and clinically impactful 
lumen segmentations. As the field of medical imaging 
continues to evolve, our approach sets a precedent for 
leveraging deep learning to enhance diagnostic accuracy and 
patient care in interventional cardiology. 
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