

Automation Testing with Appium Framework in IP
Multimedia Subsystem

Hieu Minh Tran
Viettel High Tech

Viettel Group
Hanoi, Vietnam

hieutm15@viettel.com.vn

Tuan Duc Ninh
Viettel High Tech

Viettel Group
Hanoi, Vietnam

tuannd43@viettel.com.vn
ninhductuanit@gmail.com

Thinh Duc Tran
Viettel High Tech

Viettel Group
Hanoi, Vietnam

thinhtd4@viettel.com.vn

Vuong Van Ngo
Viettel High Tech

Viettel Group
Hanoi, Vietnam

vuongnv61@viettel.com.vn
vuongvuongnvvt@gmail.com

Linh Duc Nguyen
Viettel High Tech

Viettel Group
Hanoi, Vietnam

linhnd23@viettel.com.vn
linhnd.ac@gmail.com

Abstract— The IP Multimedia Subsystem (IMS) refers to the
standard for a telecommunication system that controls
multimedia services accessing different networks. Not only the
IMS but other telecommunications networks are also required
to operate continuously. In addition, any system error can lead
to massive losses in revenue and productivity. Therefore, testing
and quality control task has an important role in
telecommunications networks, and it requires an efficient
method to detect any inherent errors and failures. To facilitate
the testing process, a solution using the test automation tool
Appium is proposed. The Appium framework is mainly used to
validate mobile browsers and mobile applications with UI. If the
IMS can be implemented with the Appium framework, the
burdensome testing tasks can be eased. Therefore, we developed
an automated model in which the Appium framework can help
in testing functions of the IMS. Our model contains some new
features added to the basic function of the framework and these
features are designed and developed specially for testing the
IMS services. This proposed solution not only reduces the time
and labor in testing but also can be applied to other systems that
are related to mobile phone services.

Keywords—IMS, Appium, testing, manual, automation,
mobile phone, telecommunications

I. INTRODUCTION

A. IP Multimedia Subsystem
The IP Multimedia Subsystem (IMS) is the key element in

the 4G/5G architecture that allows real-time services on top of
the Universal Mobile Telecommunications System (UMTS)
packet-switched domain [1][2]. IMS is based on the
specification of Session Initial Protocol (SIP), Diameter,
H.248 protocols as standardized by the Internet Engineering
Task Force (IETF) [3][4][5]. These protocols’ messages are
transmitted over UDP/TCP. The IMS system with main
protocols is illustrated in Fig. 1. The IMS provides many
services related to communications, for instance:

 HD Voice Call

 Video and text messaging over IP networks

 Telephone call control: call barring, call forwarding,
conference call…

To validate all services of the IMS, a suite of test cases is
developed. Then the IMS must pass this test cases suite. The
model of testing is shown in Fig. 2. The development of
testing methods is described in the next sections.

B. Brief Introduction of Testing Methods
There are some methods of testing: manual testing and

automation testing. Each method has its advantages and
drawbacks [6].

1) Manual testing
Manual testing is a type of software testing in which

testers execute test cases manually without using any
automated tools. Manual testing is the most fundamental
technique of all testing types as it can detect many kinds of
defects and help to find critical errors. Any new services must
be manually tested before their testing can be automated.
Therefore, manual testing is indispensable.

Fig. 1. IMS model with main protocols

Fig. 2. IMS testing model

579979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

2) Automation testing
Most systems are set up initially with manual testing.

Testers can ensure that the test cases cover all the functions
of the systems and their operations are flawless. However, the
number of test cases gradually increases as more and more
functions are developed. At this time, another type of testing
is required.

Automation testing refers to a type of testing in which
developers or testers write the test script once with the help
of testing tools and frameworks and run it on the applications.
The script automatically performs test cases without human
intervention and reports the result (the number of errors, the
time of errors, and the total testing time…). Automation
testing generates faster and more accurate results compared
to manual testing. The comparison of automation testing and
manual testing is shown in Tab. I.

TABLE I. COMPARISION BETWEEN AUTOMATION TESTING AND
MANUAL TESTING

Manual testing Automation testing
Involving human resources Using automation tools
Time-consuming Faster testing
Repetitive and error-prone Accurate
Suitable for small test
cases suite

Efficient with great test
cases suite

II. RELATED WORKS
First, the IMS system was tested by Testing and Test

Control Notation version 3 (TTCN-3) [7][8]. TTCN-3 was
standardized by the International Telecommunication Union
Telecommunication Standardization Sector (ITU-T). The
flow of mobile phone calls is simulated on a TTCN-3 sever.
TTCN-3 test cases can be configured to perform
automatically and the TTCN-3 server can cover a great
number of test cases. However, sometimes the simulation is
not similar to the operation of mobile phones. For example,
some phones reject unsuitable messages but TTCN-3 test
cases cannot detect that kind of messages in advance.
Besides, the firmware of mobile phones is updated
frequently, then testers must find which test cases are
required to be rewritten.

Therefore, the IMS system needs another automation
testing tool. Nowadays, the Appium framework is used
widely in automation testing and it is mainly used to test
mobile applications. Besides, there are some other
automation testing tools, namely Selenium, Monkey Talk,
and Robotium. However, the Appium framework has some
advantages that make it suitable for the IMS. First, the
Appium framework is an open-source platform. Second, the
Appium framework supports both iOS and Android
platforms. On the other hand, Monkey Talk and Robotium are
not open-source platforms and Robotium only supports the
Android platform. Compared to other automation tools, the
Appium framework stands out as a flexible framework that
supports various programming languages and mobile
platforms.

III. APPIUM FRAMEWORK

A. Introduction
Appium is an automated mobile testing tool, which is

used to test applications [9][10]. The model of the Appium
framework consists of three components:

 Appium Client
 Appium Server
 End devices

The architecture of the Appium framework is depicted in
Fig. 3. End devices refer to some physical devices
connected to the Appium Server.

Fig. 3. Architecture of Appium framework

B. Appium Client
Appium Client is a scripted code that is written in any

programming language like Java, Python, etc. This script
holds the configuration details of the end devices and the
applications. The code to run the test cases of the applications
is also scripted here.

C. Appium Server
Appium Server receives requests from the Appium Client

in JSON format and executes those commands on the test
devices. It creates sessions to interact with the devices and
then forwards the requests from the client to the devices. The
UI Automator is a framework that provides a set of APIs to
build user interfaces. These interfaces allow users to perform
operations such as opening the settings menu or the app
launcher on the end devices.

D. Testing flow with the Appium framework
The steps to test with the Appium framework are shown

in Fig. 4. These steps are described as follows:

 Step 1: Testers prepare scripts containing the
Appium Server configurations and test cases.

 Step 2: The scripts are converted into JSON format.
Then the Appium Client sends commands in JSON
format to the Appium Server.

 Step 3: The Appium Server recognizes the
commands and establishes connections with the
corresponding end devices. Once connections are
made, it triggers the execution of test cases in the
end devices.

 Step 4: The end devices respond to the Appium
Server and the responses are in the form of HTTP.
The Appium Server verifies the responses to
determine whether the test cases fail or pass.

 Step 5: The Appium Server generates the result of
the test process. It also provides the log of all actions
performed in the end devices.

580

Fig. 4. Appium test flow

IV. IMPLEMENT APPIUM FRAMEWORK IN IMS
In this section, the procedure of implementing the Appium

framework in the IMS is detailed.

A. Model
Fig. 5 depicts how the Appium framework is

implemented in the IMS. Test devices, the Appium Server,
and the Appium Client are set up before the test process. The
script in Appium client consists of each step to conduct the
test process. For each test case, the Appium Client sends
requests to the Appium Server and then the Server controls
test devices to perform the test case. For example, if the test
case is testing call barring, the steps are as follows:

 Step 1: The client starts the call barring test case and
sends requests to the server.

 Step 2: The server orders the test devices to register
call barring service.

 Step 3: The test devices automatically send text
messages or send USSD code to the
telecommunications core for registering call
barring.

 Step 4: The test devices wait for responses from the
telephony center to check whether the call barring
registration is successful or not.

 Step 5: If the call barring registration is successful,
the test devices make some calls to each other. If the
calls are connected normally, this test case is
considered failed. If there is an announcement about
barring service and the test devices cannot make the
calls, this test case is considered a validated test
case.

 Step 6: The server requests the test devices
unregister all the call services (including call
barring).

B. Issues
The Appium framework is firstly designed for UI testing

and it is mainly used for mobile app testing. For testing
services of the IMS systems, some issues must be measured
and they are described as follows:

a) Telecommunications systems consist of many
subsystems and defects can occur at any subsystems.
When a test case fails, the failure may not come from
the IMS but from other neighbor subsystems. For
example, when wave signal receiving at test devices
is weak, all the devices’ calls and data services are
dropped or not stable. This problem belongs to the
handshake procedure between mobile phones and
the access network.

b) A test device or the Appium Server malfunction then
affect test cases’ result.

c) The IMS is a telecommunications system that
contains many applications. Moreover, these
applications connect with each other as well as other
network applications via TCP/UDP links.
Therefore, there is a chance that the test devices
cannot receive expected messages or the expected
messages arrive late.

d) Web testing or application testing with the Appium
framework usually requires only one end device. On
the other hand, test cases of call sessions involve
many end devices. The Appium framework supports
recording screens of end devices when their test case
is performed. However, many devices correspond to
many videos, and testers find it hard to watch many
videos simultaneously.

Fig. 5. Model of the Appium framework implementation

C. New Features
To overcome these issues, some new features are

developed:

a) Test cases retrying function: This function is
developed to collect all failed test cases that are
reported by the Appium Server. Then it requests the
Appium Server to perform all these failed test cases
again. This solution can solve the problems related
to the neighbor subsystems of IMS.
Telecommunications systems are designed as fault-
tolerant systems, so an error seldom occurs
repeatedly. Therefore, at the second attempt, the
failed test cases can be conducted successfully.

b) Devices reboot function: When a test device
performs many failed test cases, this device may
break down. The reboot function requires that this
device must reboot. After the device reboots
successfully, the Appium Server continues the test

581

process. Failed test cases can be performed again
with the retrying function. Besides, the Appium
Server can malfunction and report some errors. The
reboot function checks the logs of failed test cases.
Then it looks up for the Appium Server errors
keywords, for instance, “socket hangup”. The
function will reboot all devices and the Appium
Server, then make new connections if there are
errors related to the Appium Server.

c) Services validation function: When a test device
registers or unregisters any call services, it must wait
for the confirmation text messages from telephony
centers. If these text messages arrive late or are
discarded somewhere, the test device needs to check
whether its services are registered or unregistered
successfully. The device can send a USSD code to
validate its services. It also can register or unregister
services again to ensure the script is performed
correctly.

d) Monitoring function: The videos of all devices in
one test case are merged into one video. Testers can
watch the screen recordings of all end devices in one
monitor screen and they can see how the devices
interact with each other.

D. Advantages of Automation Testing using the Appium
framework in IMS
When the Appium framework is implemented in the IMS

for Automation testing, it brings many benefits. The
advantages of automation testing with the Appium
framework in the IMS are listed as Management Graphical
User Interface (GUI), Object Oriented Programming (OOP)
design, Time-saving testing, and labor-saving testing.

1) Management Graphical User Interface
This GUI is developed to facilitate the automation testing

of the IMS. All operations in test devices are implemented in
GUI. The functions which are described in Section IV are
also integrated into the GUI. Users can reboot devices, and
check their prepaid balance… by pushing some buttons on
the GUI. Moreover, GUI allows users to configure some
parameters of test cases, the number of test devices, and
which suite of test cases is tested. The GUI is shown in Fig.
6. After a test process finishes, the result is exported in Excel
which is a user-friendly format.

Fig. 6. Management GUI

2) Object Oriented Programming design
OOP design facilitates the process of creating new test

cases. The OOP functions which interact with end devices
can also be reused and developed without effort.

3) Time-saving and labor-saving testing
Table. II shows a comparison between manual testing and

automation testing with the same suite of 600 test cases.
Executing repeated tasks is tedious and testers can make
mistakes in this process. The Appium framework eliminates
inherent errors related to the tester’s operations.

TABLE II. AUTOMATION TESTING AND MANUAL TESTING RESULT

 Manual testing Automation
testing

Total time 80 hours 16 hours
Operation
time

8 hours/day 24 hours/day

Labor
requirement

Require testers Not require any
testers

Report Test reports are
written by testers
manually

Test reports are
exported by the
Appium framework

V. PRACTICAL APPLICATION
The implementation of automation testing with the

Appium framework has been applied to the IMS system of
Viettel High Tech, Viettel Group in Vietnam. Automation
testing greatly reduces the time required for launching new
services in the IMS. The system has operated in stable
condition and serviced more than 10 million users for 2 years.

VI. CONCLUSION
At first, the IMS is assessed by manual testing. However,

when the number of services in the IMS increases, the
number of test cases increases as well. Therefore, another
solution for testing is required. Then automation testing with
the Appium framework is chosen. Before being implemented
into the IMS, the Appium framework needs some new
features to adapt for telecommunications testing. With the
development of these new features, our IMS model with the
Appium framework is deployed successfully. This helps to
reduce the time and labor needed for testing. Our proposed
solution can be applied to other telecommunications
networks which involve telephony devices.

REFERENCES
[1] 3GPP TS 23.228, “IP Multimedia Subsystem (IMS); Stage 2,”.
[2] 3GPP TS 23.002, “Universal Mobile Telecommunications System

(UMTS; LTE; Network architecture,”.
[3] RFC 3261, “SIP: Session Initiation Protocol”.
[4] RFC 6733, “Diameter Base Protocol”.
[5] RFC 3525, “Gateway Control Protocol Version 1”.
[6] B. Kumari, N. Chauhan, Vedpal, “A Comparison between Manual

Testing and Automated Testing,” in Journal of Emerging Technologies
and Innovative Research, vol. 5, issue 12 2018, pp. 323–331.

[7] ETSI ES 201 873-1 v4.7.1, “Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 1:
TTCN-3 Core Language”, 2016-06.

[8] T. Vassiliou-Gioles, “A simple, lightweight framework for testing
RESTful services with TTCN-3”, in IEEE 20th International
Conference on Software Quality, Reliability and Security Companion,
2020, Macau, China.

[9] J. Wang, J. Wu, “Research on Mobile Application Automation Testing
Technology Based on Appium”, in International Conference on Virtual
Reality and Intelligent Systems, 2019, Jishou, China.

[10] A. M. Sinaga, P.A. Wibowo, A. Silalahi, N. Yolanda, “Performance of
Automation Testing Tools for Android Applications”, in 10th
International Conference on Information Technology and Electrical
Engineering, 2018, Bali, Indonesia.

582

