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Abstract—A number of approaches have been proposed to
address the occlusion and truncation issues in pose estimation,
but they typically require additional devices or specific recording
environments. In this paper, we propose a novel pose estimation
mechanism that utilizes GAN-based viewpoint transformation.
Our mechanism complements missing pose information without
requiring additional devices or a pre-aligned camera setups. It
achieves this by transforming a supplementary viewpoint video
to the target viewpoint video utilizing GAN and using it to
complement missing keypoints in the target viewpoint video.
The evaluation results confirm that our mechanism effectively
complements missing pose information and provides reliable
viewpoint transformation performance.

Index Terms—human pose estimation, deep learning, viewpoint
transformation, keypoint complementation

I. INTRODUCTION

Human pose estimation (HPE), which involves determining
the pose of a human by estimating the positions of body key-
points, has been extensively employed to assess the postural
correspondence in videos captured by mobile devices, such
as indoor workout analysis and health condition assessment
[1] [2] [3]. However, HPE is susceptible to challenges such
as “occlusion,” which occurs when a body part is obstructed
by an object or a person, and “truncation,” which happens
when body parts are outside the recording boundaries [1].
As a result, inaccurate HPE can occur, particularly in mobile
videos recorded under constrained environments with limited
shooting angles and focal lengths [4].

Although a number of methods have been proposed to
address these challenges, they require additional devices such
as inertial measurement units (IMUs) [5] or depth sensors [6].
Furthermore, multi-view pose estimation techniques have also
been proposed [7], but their applicability is limited to specific
recording environments due to the requirement of a pre-aligned
set of cameras, fixed shooting positions, and synchronization
between devices [8].

We propose a novel pose estimation mechanism that utilizes
a generative adversarial network (GAN) to convert viewpoints
of different videos and complement the keypoints extracted
from each viewpoint. Specifically, the target (viewpoint) video
and the supplementary (viewpoint) video are simultaneously
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captured using different cameras. The supplementary video is
then transformed to align with the viewpoint of the target video
through image-to-image translation using GAN. Keypoints are
extracted from both the transformed video and the target
video. For any missing keypoints in the target video, they
are complemented using the keypoints from the transformed
video. Our mechanism enhances the overall performance of
pose estimation by enabling more accurate keypoint estimation
through the complementation of missing keypoints, without
requiring additional devices or a pre-aligned camera setups.

The contributions of this paper are as follows: (1) Proposal
of a novel pose estimation mechanism that utilizes GAN-
based viewpoint transformation to enable complementation of
missing keypoints; (2) Proposal of a novel multi-view pose
estimation mechanism that can be applied without additional
devices or pre-aligned camera setups; (3) Case study using
real-world datasets and validation of the proposed mecha-
nism’s effectiveness.

This paper is organized as follows: Section 2 provides an
overview of related works. Section 3 presents the mechanism
proposed in this paper. Section 4 presents the experimental
results of our mechanism. Finally, Section 5 concludes the
paper.

II. RELATED WORK

A. Image-to-Image Translation

Image-to-image translation enables the transformation of
one image domain to another by training neural network
models such as CNN and GAN with the mapping information
between the input and output images [9]. Pix2pix utilizes con-
ditional GAN to learn mapping information between images
and generate an image by transforming specific aspects of the
input image to a desired condition [10]. It is widely utilized
in diverse generative tasks, including map generation, aerial
photo generation, and image colorization. Unlike pix2pix,
which relies on a set of image pairs with similarities, Cycle-
GAN operates with unpaired training data. It enables image
domain transformation by learning the mapping information
between two unpaired domains: the source domain and the
target domain [11]. UGATIT operates with unpaired training
data, which incorporates attention feature maps and a learnable
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Fig. 1. Overview of Our Mechanism

normalization function to guide the translation process by
distinguishing important regions from minor ones [12].

B. Human Pose Estimation

Human pose estimation is a technique that analyzes the pose
of a person in videos or images by identifying the locations of
joints or body parts as keypoints [1]. OpenPose, a popular real-
time multi-person pose estimation mechanism, is a CNN-based
2D method for estimating the poses of multiple individuals
[13]. AdaFuse is a multi-view fusion method that leverages
adaptive weights to combine information from multiple view-
points captured by a set of pre-aligned cameras [8]. DECA
incorporates a capsule encoder to model each joint of the input
image as a capsule object and utilizes a multi-task decoder for
pose estimation, thereby demonstrating enhanced performance,
especially in top-view scenarios [14]. ViTPose incorporates a
ViT encoder and a lightweight decoder, enabling fast inference
and delivering superior performance compared to other pose
estimation methods [15].

Overall, existing pose estimation methods generally fail
to successfully address “occlusion” and “truncation” and es-
sentially rely on specialized recording environments, such as
additional devices or pre-aligned camera setups. Hence, it is
required to design a new pose estimation mechanism that can
be applied in general recording environments and is capable
of effectively addressing these challenges.

III. OUR METHOD

In this paper, we propose a novel human pose estima-
tion (HPE) mechanism that complements missing keypoints
through viewpoint transformation by incorporating GAN-
based image-to-image translation. Our proposed mechanism
addresses common challenges in HPE in general recording
environments, including occlusion and truncation.

Fig. 1 presents an overview of the proposed mechanism,
which utilizes a frame-wise segmented image of a video as
input. During the training process, the viewpoint transfor-
mation module is trained to convert a supplementary image
into a transformed image with the same viewpoint as the
target image. During the HPE process, the trained viewpoint
transformation module converts a supplementary image into a

transformed image. Subsequently, the pose estimation module
estimates the keypoints of both the target image and the
transformed image. By utilizing the keypoints estimated from
the transformed image, the keypoint complementation module
fills in the missing keypoints of the target image. The detailed
operation of each module is as follows.

A. Viewpoint Transformation

The viewpoint transformation module converts a supple-
mentary image to have the same viewpoint as the target
image. It incorporates pix2pix [10], which learns the mapping
information between image pairs and generates an image that
reflects the intended aspect of the input image. By training
the viewpoint transformation module with a paired dataset
of target images and supplementary images, it can effectively
convert a supplementary image into a transformed image with
the target viewpoint.

B. Pose Estimation

The pose estimation module estimates the keypoints of
the human instance detected within the target image and the
transformed image, respectively. The pose estimation module
incorporates ViTPose [15], a transformer-based HPE model,
which extracts a feature map, performs upsampling of the
feature map, and regresses the heatmap to determine a total
of 17 keypoints.

Fig. 2. Example of Measuring Lengths of Body Parts
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Algorithm 1: Keypoint complementation
Input: TG ⇐ a list of keypoints for the target image
TF ⇐ a list of keypoints for the transformed image
δ ⇐ a confidence score threshold
k ⇐ a number of all keypoints
Output: Comp ⇐ a list of complemented keypoint
coordinates

1 Let (C, S) be a keypoint where C represents the estimated
coordinates and S represents the confidence score

2 Let N be a list of non-missing keypoint indexes
3 Let n be a number of non-missing keypoints
4 Let s be a sum of translation vector of non-missing keypoints
5 Let v be an average translation vector

6 for i ← 1 to k do
7 if TG[i].S > δ then
8 append i to N
9 n ← n+ 1

10 for i ← 1 to k do
11 if i ∈ N then
12 add (TG[i].C − TF [i].C) to s

13 v = s
n

14 for i ← 1 to k do
15 if i ∈ N then
16 append TG[i].C to Comp

17 else
18 append (v + TF [i].C) to Comp

19 return Comp

C. Keypoint Complementation

The keypoint complementation module complements the
missing keypoints from the target image using the keypoints
from the transformed image. It assumes that the transformed
image is generated with the same proportional lengths for all
body parts as the target image. Specifically, the lengths of body
parts (head, left arm, right arm, body, left leg, and right leg) are
measured as depicted in Fig. 2. The keypoint complementation
module verifies whether the proportions between the lengths of
these body parts are identical between the target image and the
transformed image. The detailed mechanisms of the keypoint
complementation module are depicted in Algorithm 1.

In Algorithm 1, TG and TF refer to the list of keypoints for
the target image and the transformed image, respectively. Each
keypoint is represented as a tuple: (C, S), where C represents
the estimated coordinates and S represents the confidence
score. Additionally, δ denotes a pre-defined threshold for the
confidence score, and k represents the number of all keypoints.

Algorithm 1 iterates the following operation for k times. In
each iteration, keypoints from the target image are classified
as non-missing keypoints if their confidence score exceeds a
pre-defined threshold (=δ). Then the index of each non-missing
keypoint is appended to a list (=N ), and the number of non-
missing keypoints (=n) is incremented (lines 6-9).

Algorithm 1 then iterates the following operation for k

times. If the index i is contained in N , the algorithm calculates
the cumulative sum of the translation vectors (=s) based on
the difference between the coordinates of the i-th keypoint
in TG and TF . Afterwards, s is divided by the number of
non-missing keypoints (=n) to compute the average translation
vector (=v) that will be used for keypoint complementation
(lines 10-13).

Finally, Algorithm 1 iterates the following operation for
k times. If the index i is contained in N , the algorithm
appends the coordinates of the target image keypoint to Comp.
Otherwise, it appends the coordinates obtained by adding
the average translation vector (=v) to the transformed image
keypoint to Comp. Ultimately, the algorithm returns the list
of complemented keypoints (=Comp) (lines 14-19).

IV. EVALUATION

We evaluate the effectiveness of our proposed mechanism
by addressing the following two research questions:

• RQ#1: How effectively does our proposed mechanism
improve pose estimation?

• RQ#2: How effectively does our proposed mechanism
work for viewpoint transformation?

In our evaluations, we selected the front-view as the target
viewpoint and the top-view as the supplementary viewpoint.
Since the top-view provides a completely different perspective
from the front-view, it can include additional information that
complements potential occlusions and truncations in the front-
view video. Since our mechanism uses frame-wise segmented
images of a video as input, as described in Section 3, the
evaluations were performed using an image dataset.

A. Experimental Setting

In our evaluations, we selected the PanopTOP31K dataset
[16], which comprises images of entire-body poses from mul-
tiple viewpoints for 23 different subjects (front-view: 25,604
train images and 8,044 test images; top-view: 25,604 train
images and 8,044 test images). The viewpoint transformation
module was implemented based on pix2pix [10], an image-to-
image translation model, and trained using the PanopTOP31K
dataset. The pose estimation module was implemented based
on ViTPose [15].

The environment and hyperparameters used in our eval-
uations are as follows: (1) pix2pix: NVIDIA Geforce RTX
3070 GPU, Python 3.9.16, PyTorch 2.0.1+cu117, plateau
lr policy, 1 batch size, 149 epochs; (2) ViTPose: ViTPose-25-
S, NVIDIA Geforce RTX 3070 GPU, Python 3.9.16, PyTorch
2.0.1+cu117;

For RQ#1, to validate the effectiveness of our proposed
mechanism, we first generated a masked image dataset as
follows. As shown in Fig. 3, we selected eight masking
regions: (a) left hand, (b) right hand, (c) both hands, (d) left
arm, (e) right arm, (f) both arms, (g) left leg, and (h) right
leg. From the front-view test images, we randomly selected
20 images and masked the eight regions, resulting in a total
of 160 masked images. For our evaluation metric, we defined
the percentage of correct keypoints (PCK) as follows. We set
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TABLE I
PCK PERFORMANCE COMPARISON BETWEEN MASKED IMAGES AND OUR MECHANISM

Target Left
Hand

Right
Hand

Both
Hands

Left
Arm

Right
Arm

Both
Arms

Left
Leg

Right
Leg

Mean

Masked 96.58% 96.32% 91.32% 91.32% 91.05% 81.58% 95.26% 93.42% 92.11%
Our Mechanism 97.89% 96.58% 96.84% 96.84% 96.84% 94.47% 97.37% 96.84% 96.71%

the keypoints estimated from the unmasked target image as the
ground truth. Then, we measure the PCK by comparing the
keypoints estimated from the masked image and the keypoints
complemented by our mechanism on the masked image.

For RQ#2, to assess the viewpoint transformation perfor-
mance of our proposed mechanism, we utilized 8,044 top-
view test images. To evaluate the similarity between a front-
view test image, which corresponds to a top-view test image
pair, and the transformed (front-view) images obtained by
applying our viewpoint transformation module to the top-view
test image, we utilized the perceptual similarity metric LPIPS
[17] and the structural similarity metric SSIM [18].

B. Experimental Results

(RQ#1) Effectiveness of our mechanism in pose esti-
mation: Table I presents the PCK performance comparison
between the masked images and their complemented images
using our mechanism for each masking region. For the masked
image, the PCK for each region is as follows: left hand =
96.58%, right hand = 96.32%, both hands = 91.32%, left arm
= 91.32%, right arm = 91.05%, both arms = 81.58%, left leg
= 95.26%, and right leg = 93.42%. For the complemented
image, the PCK for each region is as follows: left hand =
97.89%, right hand = 96.58%, both hands = 96.84%, left arm
= 96.84%, right arm = 96.84%, both arms = 94.47%, left leg
= 97.37%, and right leg = 96.84%. The results demonstrate
that the complementation achieved through our mechanism
successfully enhanced the performance, resulting in an average
increase of 4.60 percentage points.

Fig. 3. Examples of Masked Images

TABLE II
PERFORMANCE COMPARISON OF VIEWPOINT TRANSFORMATION

BETWEEN THE EXISTING METHOD AND OUR MECHANISM

Methods LPIPS SSIM
DiOr [23] 0.176 0.806

Our Mechanism 0.127 0.829

(RQ#2) Effectiveness of our mechanism in viewpoint
transformation: Table II presents the performance compari-
son of viewpoint transformation between the existing method
(DiOr [19]) and our mechanism. The evaluation is based on
the perceptual similarity and structural similarity between each
front-view test image and the transformed image obtained
through our mechanism. Note that the transformed image
was derived by applying our mechanism to transform the
corresponding top-view test image into the front-view image.
When comparing the performance of our mechanism (LPIPS
= 0.127 and SSIM = 0.829) with that of the state-of-the-art
pose transfer method, DiOr [19] (LPIPS = 0.176 and SSIM
= 0.806), our mechanism exhibited superior performance.
Specifically, our mechanism achieved a lower LPIPS score
by 0.049 and a higher SSIM score by 0.023. Considering
the characteristics of the evaluation metrics (i.e., lower values
indicating better performance for LPIPS, and higher values
indicating better performance for SSIM), the results confirm
that our mechanism provides effective viewpoint transforma-
tion performance.

Fig. 4 shows the representative images transformed by our
mechanism. Specifically, the first column displays the target
image, the second column displays the supplementary image
paired with the target image, and the last column displays the
transformed image obtained by applying our mechanism to the
supplementary image.

The results of the comparison for each pose are as follows.
For case (a), when examining the distinctive features of the
target image, such as the pose of raising both hands, the
position of hands on the sides of the head, and the angles
between the shoulders and elbows, the transformed image was
generated to closely resemble the pose of the target image. For
case (b), when examining the distinctive features of the target
image, such as the pose of straightened arms to both sides and
the position of hands raised to shoulder height, the transformed
image was generated to closely resemble the pose of the target
image. For case (c), when examining the distinctive features of
the target image, such as the pose of both hands placed on the
waist, the position of the hands on the waist, the angle of the
shoulders, and the angle of the elbows bent towards the body,
the transformed image was generated to closely resemble the
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Fig. 4. Representative Examples of Viewpoint Transformation via Our
Mechanism

pose of the target image.

V. CONCLUSION

In this paper, we propose a novel human pose estima-
tion (HPE) mechanism that employs GAN-based viewpoint
transformation to complement missing keypoints in the target
viewpoint image. The results of keypoint complementation
using our mechanism on the masked image confirm the
effectiveness of our proposed approach in complementing the
missing keypoints in the target viewpoint images. Furthermore,
the results of evaluating the similarity between the viewpoint-
transformed images generated by our mechanism and the
target images verify that our mechanism provides valid view-
point transformation performance. Our future work will focus
on validating the effectiveness of our mechanism on high-
resolution datasets containing various poses. Additionally, we
will explore the potential of our mechanism to be applied
in multi-person scenarios, as well as its compatibility with
advanced image reconstruction methods [20].
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