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Abstract— The evaluation of the impact of actions undertaken is 
essential in management. This paper assesses the impact of 
efforts considered to mitigate risk and create safe environments 
on a global scale. We measure this impact by looking at the 
probability of improvement over a specific short period of time. 
Using the World Risk Index, we conduct a temporal analysis of 
global disaster risk dynamics from 2011 to 2021. This temporal 
exploration through the lens of the World Risk Index provides 
insights into the complex dynamics of disaster risk. We found 
that, despite sustained efforts, the global landscape remains 
divided into two main clusters: high susceptibility and moderate 
susceptibility, regardless of geographical location. This 
clustering was achieved using a semi-supervised approach 
through the Label Spreading algorithm, with 98% accuracy. We 
also found that the prediction of clusters achieved through 
supervised learning on the period considered in this study (one, 
three, and five years) showed that the Logistic regression 
(almost 99% at each stage) performed better than other 
classifiers. This suggests that the current policies and 
mechanisms are not effective in helping countries move from a 
hazardous position to a safer one during the period considered. 
In fact, statistical projections using a scenario analysis indicate 
that there is only a 1% chance of such a shift occurring within a 
five-year timeframe. This sobering reality highlights the need 
for a paradigm shift. Traditional long-term disaster 
management strategies are not effective for countries that are 
highly vulnerable. Our findings indicate the need for an 
innovative approach that is tailored to the specific 
vulnerabilities of these nations. As the threat of vulnerability 
persists, our research calls for the development of new strategies 
that can effectively address the ongoing challenges of disaster 
risk management. 
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I. INTRODUCTION 
Disaster risk is a complex and dynamic phenomenon 

caused by the interplay of natural hazards, socio-economic 
conditions, governance, and conflict. Understanding the 
multifaceted nature of disaster risk is essential for developing 
effective strategies to manage it [1]. Extensive research has 
been conducted on disaster risk, hazards, and their 
implications resulting in the establishment of several 
indicators capable to explain and quantify their significance 
and possible impact. For instance, in [2], an analysis of 
popular disaster risks index and their usability is discussed. 
They highlighted the importance to select a suitable index at 

a country level analysis considering the subcomponents of 
each which could mislead the real interpretation of risk. The 
frontier in disaster risk science research is discussed in [3] in 
the light of progress studies based on the context of China. 
The research of [4], provides a systematic review of the 
vulnerability over time and depicts the existing trend in that 
specific area. The World Risk Index (WRI) was developed by 
the Alliance Development Work as a new way to assess 
disaster risk at the country scale since 2011. The concept 
considered through this index is not focused on the impact of 
a disaster, such as mortality or economic losses, but rather on 
measuring the risk of disasters by considering the exposure 
of people and infrastructure to hazards, their vulnerability to 
catastrophe as well as their ability to cope with and recover 
from disasters. It is a more comprehensive way of assessing 
disaster risk than traditional methods, which focus on the 
impact of disasters[2], [5]. While research on this topic 
endeavors have illuminated various facets of disaster risks, 
contributing to the strides made in this field, the existing 
frameworks designed to mitigate the impacts of such risks are 
often conceived for long-term durations[3]. This constitutes 
a significant constraint, given the capricious nature of these 
hazards and their escalating repercussions on human lifestyle. 
Furthermore, despite the implementation of these 
frameworks, the persistence of peril persists, thereby 
augmenting the vulnerability of certain nations, particularly 
those categorized as the least developed[6]. Consequently, 
avenues for these nations to ameliorate their circumstances 
remain severely restricted. 

This study introduces an innovative approach to 
understanding the complex dynamics of global disaster risk 
using the World Risk Index (WRI). This is achieved by 
adopting a temporal scenario-based framework that is 
complemented by machine learning methodologies. The 
primary objective is to assess the short-term prospects of 
countries in vulnerable states transitioning to more secure 
positions. The study has the potential to enrich our 
understanding of disaster risk dynamics at a global scale, 
providing valuable insights into the use of advanced 
computational techniques to strengthen a nation's resilience to 
disasters. Central to our approach is the stratification of 
countries into discrete clusters, predicated upon their 
respective disaster risk profiles. Subsequently, we delve into 
the likelihood of nations either maintaining their cluster 
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categorization or undergoing shifts to disparate clusters as 
time progresses. The insights derived from this analysis 
provide essential guidance for comprehensively assessing the 
actual impact of existing frameworks aimed at mitigating 
hazards on a global scale. Furthermore, this analysis deepens 
our understanding of formulating more proactive disaster risk 
management strategies. At the heart of this investigation lies 
the World Risk Report, an annual publication that delves into 
various facets of disaster risk management. The cornerstone 
of the report is the World Risk Index, a tool designed to 
illuminate the probability of severe natural events escalating 
into full-blown disasters across a diverse range of nations[7]. 

To achieve this, the remainder of this paper is organized 
as follows: section II is the methodology, followed by section 
III which deals with the results and discussion. To conclude, 
the section IV provides an overall conclusion along with 
limitations and future studies. 

II. METHODOLOGY 

A. Dataset  
The dataset utilized spans eleven years and incorporates 

data from 181 countries. It encompasses variables such as 
Region, World Risk Index (WRI), Exposure, Vulnerability, 
Susceptibility, Lack of Coping Capabilities, Lack of 
Adaptive Capacities, Year, and categorical indicators for 
Exposure, WRI, Vulnerability, and Susceptibility 1 . The 
group of Figures 2 depicts the temporal evolution of the 
numerical variable over time.  

 

 

 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evidently, there has been a discernible upward trajectory 
in the Exposure (f) to climate change over the preceding 
decade, contributing to a notable escalation in the global WRI 
(a). Likewise, a parallel pattern emerges in the realm of Lack 

                                                           
1https://www.kaggle.com/datasets/tr1gg3rtrash/globaldisaste-risk-index-
time-series-dataset 

of Coping Capabilities (d), indicating a pressing need for 
enhanced measures in governance, preparedness, early 
warning systems, medical infrastructure, as well as social and 
material security. Despite ongoing efforts in infrastructure 
development, societal vulnerability to climate change persists. 
This is evidenced by the existing disparity between 
vulnerability (b) and susceptibility (d). A similar gap is 
apparent between the deficiency in coping capabilities (d) and 
the absence of adaptive capacities (c). This implies that as the 
magnitude of disaster risks expands, a considerable number of 
nations are still deficient in the capacity to effectively confront 
these challenges. Moreover, an even larger cohort struggles to 
adapt to these events. This intricate scenario could be 
attributed to multifarious factors, such as economic hardship 
and other related circumstances. 

B. Outliers detection 
The whiskers for WRI and Exposure suggest that there are 

extreme values which should be considered outliers. These 
countries are more likely to experience disasters above the 
normal range, what is not the case for the other variables. By 
finding the z-score for these two variables with a threshold of 
3[8] (data point that is more than 3 standard deviations away 
from the mean is considered an outlier), we can visualize these 
outliers. 

 
 Figure 3: Visualization of outliers in the dataset 

 

 
 Figure 4: Outliers and inliers in WRI And Exposure 

Over time, these countries are: Vanuatu, Tonga, 
Philippines, Solomon Island, Dominica Republic, Antigua 
and Barbuda, Brunei and Japan, and there are located in Aisa 
and Oceania. 

C. Cluster modeling 
To unravel the temporal aspects of global disaster risk, 

our analysis is conducted using a clustering methodology, 
approach involving the grouping countries into clusters based 
on their unique disaster risk characteristics as they evolve 

     
(a) (b) 

   
(c)                    (d) 

  
(d)     (f) 

Figures 2: Temporal evolution of WRI and subcomponents 
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over time. Thus, the unsupervised modeling was achieved 
using the KMeans clustering algorithm considering the 
limited size of the dataset. It is especially valuable when 
dealing with unlabeled data necessitating the identification of 
patterns or groupings within the dataset[9] and was employed 
to cluster countries according to shared characteristics across 
time predicated on their inherent resemblances. To improve 
the clustering since they were outliers in the dataset that 
needed to be considered so that to deepen one’s 
understanding, a semi-supervised learning was achieved 
using the Label Spreading algorithm[10] which works by first 
creating a graph of the data, where the nodes of the graph 
represent the data points and the edges of the graph represent 
the similarity between the data points and iteratively spreads 
the labels from the labeled data points to the unlabeled data 
points, using the edge weights of the graph to determine how 
likely it is that two data points have the same label. In this 
research, this algorithm is trained in hiding 50 percent of the 
labels in the train set, simulating a semi-supervised scenario 
in which only a small fraction of the data is labeled. The 
algorithm must learn to classify the unlabeled data based on 
the labeled data[11].  

D. Supervised learning modeling 
The performance of the Logistic Regression 

(LR)[12], Decision Tree Classifier (DT)[13], Random Forest 
Classifier (RF)[14], XGBoost Classifier (XGB)[15] was 
compared to predict the clusters considering the different 
period defined. Considering the scenario to analyze, the train 
and test period was defined as follows: 

 
• For I year prediction: 

train = year < 2021 / test = year == 2021 
• For 3 years prediction:  

train = year < 2018 / test = year >= 2018 
• For 5 years prediction:  

train = year < 2018 / test = year >= 2016 
 

The features considered are: Region, WRI, Exposure, 
Vulnerability, Susceptibility, Lack of Coping 
Capabilities, Lack of Adaptive Capacities, Year, Exposure 
Category, WRI Category, Vulnerability 
Category, Susceptibility Category and Clusters, the target. 

E. Metrics 
A comprehensive evaluation of the clustering was 

achieved using the Silhouette Score[16], Calinski-Harabasz 
Index[17], and Davies-Bouldin Index[18]. These indices offer 
insights into the quality of clustering outcomes, including 
cluster separation, compactness, and assignment. For the 
semi-supervised learning approach and supervised 
classification task, the AUC[19], confusion matrix[20], 
accuracy[21]. 

F. Scenario analysis 
Scenario analysis stands as a strategic planning and 

decision-making methodology, involving the thoughtful 
contemplation of numerous plausible future scenarios. Its 
purpose lies in assessing potential outcomes, preparing for 
uncertainties, and making well-informed choices. This 
technique holds immense value across diverse domains such 
as business, economics, environmental studies, and risk 
management. At its core, it revolves around the creation of a 

collection of distinct scenarios, each portraying a conceivable 
future condition or a specific set of circumstances. These 
scenarios typically come to fruition by considering various 
assumptions pertaining to pivotal variables or factors that 
hold the power to sway outcomes. By embarking on this 
exploration of scenarios, decision-makers garner a deeper 
grasp of the probable risks and opportunities interlinked with 
the diverse trajectories the future might unfold[22]. Two 
scenarios were taken into consideration in this research. The 
first involved evaluating the likelihood of a country 
remaining within its cluster for the upcoming year, three 
years, or five years. The second scenario focused on the 
probability of a country transitioning from its initial cluster to 
another within the subsequent year, three years, or five years. 
This approach facilitates the assessment of the efficacy of 
concerted endeavors aimed at mitigating the adverse 
repercussions of global hazards within short-term intervals. 
To operationalize this assessment, a function was developed. 
This function accepts test data, the current cluster 
designation, and the predicted cluster designation as inputs. 
It then filters the data to encompass only countries within the 
current cluster, calculates the count of countries that have 
migrated to the predicted cluster, and subsequently computes 
the probability by dividing the count of migrated countries by 
the total number of countries in that cluster. The function was 
instantiated with varying arguments, contingent on the 
estimation period, to calculate probabilities for diverse 
scenarios. 

G. Research design 
We followed the process designed in Figure 1 to answer to 

the scenarios considered in this research. 

 
*UL = unsupervised learning, *SSL = semi-supervised learning, *SL = Supervised 

learning 
Figure 1: Diagram of the research design 

Upon completing a temporal analysis for each variable to 
examine their respective trends over time, the dataset 
undergoes clustering via an unsupervised learning 
methodology reinforced by a semi-supervised learning 
modeling. This endeavor results in the partitioning of the data 
into appropriate formats for classification tasks, where the 
clusters constitute the target and the variables serve as 
features. Subsequently, the classifiers aforementioned are 
used for supervised prediction, and their performance is 
rigorously assessed to determine the most fitting choice for 
each distinct scenario. With this optimal algorithm identified, 
the assessment of probabilities is undertaken, culminating in 
the articulation of the final outcomes and insights. 

III. RESULT AND DISCUSSION 

A. Clustering result 
With a Silhouette Score of 0.46, Calinski-Harabasz Index 

is 2128.57, and the Davies-Bouldin Index is 0.83, such score 
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suggests that clustering is good, but not perfect. The data 
points are not perfectly assigned to their clusters, but they are 
not poorly assigned either. The clusters are also well-
separated, but they are not perfectly compact, this mainly due 
to the presence of outliers which could not be removed from 
the dataset since they provide more insight to the overall 
result. A sample of clusters are provided in the group of 
Figures 5 

  
(a) (b) 

   
(c) (d)  

      
(e)  (g) 

     
(h)  (i) 

    
(j)  (k) 

    Figure 5: Clusters visualization 

It appears that over time, some clusters of countries are 
well-defined, while others are not. For example, the cluster of 
countries with low vulnerability and high adaptive capacity 
(cluster c) is well-defined, meaning that these countries are 
less likely to be affected by disasters. However, the cluster of 
countries with high exposure and low coping capacity (cluster 
h) is not well-defined, meaning that there is a range of 
countries with different levels of exposure and coping 
capacity. This suggests that the factors that contribute to 

disaster risk can change over time. For example, a country 
that is initially vulnerable to disasters may be able to reduce 
its vulnerability by investing in adaptive capacity. 
Conversely, a country that is initially not vulnerable to 
disasters may become more vulnerable due to factors such as 
climate change or population growth. Thus, to properly 
identify the two clusters suggested by the KMeans algorithm, 
a semi-supervised approach using the Label Spreading 
algorithm with a K-Nearest Neighbors as kernel was utilized 
and trained in randomly hiding 50 percents of the label 
provided by the KMeans. Table I provide the result of the 
semi-supervised clustering.  

TABLE I.  SEMI-SUPERVISED LEARNING PERFORMANCE 

Model TP FP TN FN AUC Accuracy 
Label 
Spreading 164 2 2 215 0.98 0.98 

 
 The 98 percents of accuracy and area under curve 
alongside with 1% of error in positive probability was 
achieved and almost 0.9% error on negative probability 
achieved, suggest that this labeling satisfying compared to the 
one provided by the unsupervised algoruthm.  By reducing the 
dimensionality of this clustering using the Principal 
Component Analysis (PCA)[23] with two components, the 
Figure 6 provide a ploting of the clustering over time with  the 
transduction of the model[24] as option to differenciate the 
colors of clusters. 

 
Figure 6: Semi-supervised cluster over time 

Figure 6 clearly depicted the separation of clusters over time. 
The mean coordinate of each cluster was called cluster centers 
showing how good the clustering was achieved using this 
approach. The classification task using supervised learning 
will be achieved on these two classes considering the defined 
scenario. 

B. Supervised learning classification 
Table II provides a concise summary of the performance 
attained by each model. 

TABLE II.  SUPERVISED LEARNING PERFORMANCE 

Year Model TP FP TN FN AUC Accuracy 

One 

RF 67 0 0 114 1.00 1.00 
DT 66 1 0 114 1.00 1.00 
XGB 67 0 0 114 1.00 1.00 
LR 67 0 0 114 1.00 1.00 

Three 

RF 264 1 2 443 0.99 1.00 
DT 262 3 2 443 0.99 0.99 
XGB 262 3 2 443 0.99 0.99 
LR 265 0 1 444 0.99 100 

Five 
RF 406 6 2 637 0.99 0.99 
DT 409 3 3 636 0.99 0.99 
XGB 408 4 2 637 0.99 0.99 
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LR 409 3 0 639 0.99 1.00 
 
In the context of one-year classification, each classifier 
achieved nearly impeccable predictions, despite the 
imbalanced classes (67 / 114). The exception was the DT 
model, which encountered difficulty in accurately classifying 
False Positives (FP) (1). For three-year classification, the LR 
exhibited superior performance, boasting reduced error rates 
for True Negatives (TN) and perfection in False Positives 
(FP). This positioned it as the optimal choice among the 
alternatives. Notably, DT and XGB models faced challenges 
and employed a reduced number of variables compared to 
their counterparts. Remarkably, the quantity of variables 
employed by the RF diminished in comparison to its one-year 
prediction performance. Extending the scope to five-year 
classification, the LR continued its excellence, with lower 
error for FP and flawless accuracy for TN. This consistent 
performance solidified its prominence. Conversely, the RF 
yielded the least favorable outcome in this scenario. It's worth 
noting that XGB, while incorporating additional features in 
its predictions for five years, still fell short of outperforming 
DT and LR in terms of predictive accuracy. Thus, the 
prediction achieved by the LR algorithm was considered to 
evaluate the different probabilities. 

C. Scenario result. 
In accordance with the procedure elucidated in section E 

of the Methodology, Table III presents the outcomes for each 
distinct scenario. 

TABLE III.  SCENARIO RESULT 

Scenario 
Years 

One Three Five 

The probability of a country in cluster 0 to 
remain in this cluster 1.00 1.00 0.99 

The probability of a country in cluster 
0 shifting to cluster 1 0.00 0.00 0.01 

The probability of a country in cluster 1 to 
remain in this cluster 1.00 1.00 1.00 

The probability of a country in cluster 1 
shifting to cluster 0 0.00 0.00 0.00 

 
According to historical data and considering the current 

global situation with respect to disaster risks evaluate using 
the WRI and its subcomponents alongside with countries’ 
responses to the hazards, it is highly unlikely (1% of 
probability) for a country that is highly exposed to disaster 
risks to shift to a better position in terms of exposure, 
vulnerability, and susceptibility within the short term (1 to 4 
years), regardless of its coping capabilities or adaptive 
capacities. The impact of improvements in coping capabilities 
or adaptive capacities may only be observed beyond five 
years, with a slight possibility of transitioning from a 
vulnerable position to a better one, although this does not 
preclude the occurrence of risks. The outcomes of this 
research contribute significantly to comprehending the extent 
to which current responses to disaster risks fall short in 
ensuring global security. Consequently, it becomes imperative 
to formulate rapid, resilient, and practical solutions that can 
more effectively counteract these hazards, particularly in 
nations highly vulnerable and prone to susceptibility. 

However, the challenge remains considerable due to the 
majority of these nations being categorized as least developed 
countries, implying a lack of resources to address their 
fundamental needs. Furthermore, the process of establishing 
robust infrastructures akin to those present in developed 
countries is a prolonged endeavor, while disaster risks persist 
as constant and unpredictable threats. The consensus within 
the scientific community emphasizes the vital necessity of 
coping capabilities to confront these hazards[7]. This 
consensus underpins the formulation of various globally 
recognized roadmaps. Nonetheless, given the nature and 
magnitude of these hazards, relying solely on long-term 
preparations proves inadequate for least developed countries. 
These nations remain exposed, their vulnerability and 
susceptibility deepening over time. This predicament 
necessitates a paradigm shift, one that addresses these 
disasters within these countries through a short-term lens. This 
approach hinges on addressing specific risks that hold the 
highest likelihood of occurrence in distinct regions or nations. 
Consequently, reimagining disaster risk management in 
alignment with a country's profile and susceptibility emerges 
as an essential and imperative challenge demanding 
resolution. 

IV. CONCLUSION, LIMITATIONS AND FUTURE STUDIES 
Disaster risks are universally critical issues with the 

potential to cause substantial disruption, transcending 
geographical boundaries and resisting existing mitigation 
efforts. In this study, our inquiry delves into the effectiveness 
of concerted attempts to address this issue over a span of time 
across the globe. Upon careful analysis of disasters risks using 
the world risk index and its subcomponents, from the results 
obtained it was evident that over an 11-year timeframe, the 
world's composition has bifurcated into two primary clusters, 
demarcating regions of higher vulnerability from those less 
susceptible. This trend persists regardless of geographical 
location and the existing classification categories of the World 
Risk Index (e.g., medium risk). Additionally, it's apparent that 
transitioning a country from a precarious position to a safer 
one within a short-term timeframe is an improbable feat. As 
such, advocating for a new paradigm of disaster risk 
management tailored on a short-term based and suitable to 
susceptible nations becomes a compelling necessity. 
However, certain limitations underscore this analysis. Even 
within the delineated clusters, certain countries might not 
conform to the general cluster characteristics established by 
algorithms. Deeper exploration at the country level is 
imperative to comprehend the preparatory measures each 
nation is undertaking to confront these hazards. This inquiry 
should also encompass assessing the appropriate budgetary 
considerations aimed at enhancing short-term coping 
capabilities. The heterogeneity of hazard exposures across 
countries necessitates varied levels of effort in addressing 
these risks. Moreover, the world risk index is an aggregate of 
27 publicly available indicators. Knowing that all the 
countries are not exposed to the same risks, further country 
based or regional based research need to be carried out to 
better integrate resource to face their inherent hazards. This 
brings to light the importance of further research in gauging 
the extent to which vulnerable countries must invest in 
bolstering their coping capacities to effectively counter short-
term risks. 
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