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Abstract—This paper addresses automatic event
prediction from unstructured text, specifically event
chains. While current approaches employ LSTM for
encoding full chains, learning long-range narrative
orders, or learning partial orders and long-range nar-
rative orders, none of them consider writer sentiment.
To address this, we propose a deep learning-based
approach that incorporates writer sentiment. We pre-
process the text, extract events, compute sentiment
scores using SentiWordNet, convert events to digital
vectors, and feed them along with sentiment scores
into a deep learning-based classifier. This classifier
uses hidden states for event pair modeling, with each
pair having its associated sentiment. Evaluation re-
sults show that our approach significantly surpasses
state-of-the-art methods with 29.2% accuracy.

Index Terms—Event Prediction, Deep Learning,
Sentiment

I. INTRODUCTION

It is critical to several artificial intelligence appli-
cations (i.e., intention recognition, discourse under-
standing, and dialogue generation) to understand/i-
dentify events described in a large text. To encode
information into natural language, we usually think
that the reader can effortlessly make inferences based
on commonsense knowledge and ignore the sentiment
involved in the information. Take the event "Inam
entered a restaurant" as an example, which can lead
to numerous possible inferences. These inferences may
include scenarios such as Inam having to wait in a
long line, being seated at a table, reading the menu,
placing an order, receiving the food, and so forth.
Such assumptions based on commonsense knowledge
are called Scripts which is intuitive for readers and
commonly lost in context [1]. Therefore, an automatic
understanding of the text for machines and predicting

the events from scripts is a very challenging task
because machines have no extra knowledge to under-
stand the events in a chain [2].

Early scripts are manually extracted for a specific
purpose and it is time-consuming and difficult to con-
struct for long text. To automate the manual task, a
number of following researches have been conducted.
For example, Chambers and Jurafsky [3] automati-
cally extracted the knowledge of event sequences from
the text using coreference resolution that provides the
source of information about an entity. Jans et al. [4]
improved the method of Pointwise Mutual Information
(PMI) using the skip bi-gram probabilities to calculate
the relationship between the events. Other researches
[5]–[7] further exploited the improved PMI method to
induce the chain of events from the text.

Furthermore, neural network models [2], [4], [6],
[8]–[10] are recently used for the modeling of event se-
quences. These neural network approaches are reliable
with the earlier statistical models to exploit the rela-
tionship between a pair of events. To improve the ac-
curacy of the neural network, Pichotta and Mooney [5]
adopted the Long Short-Term Memory (LSTM) [11] to
model the sequence of events that gathers much more
information of order in contrast to other researches [2],
[6], [9]. Later, Wang et al. [12] exploited the LSTM
model for the sequence of narrative events and used a
dynamic memory network [13] to model relationships
between event pairs because LSTM model suffers from
a redundancy problem. In contrast to Wang et al. [12],
previous approaches [2], [3], [9] give equal weights to
events that exist in a text. Shangwen et al. [14] devel-
oped a self-attention mechanism to focus on various
parts of events in the chain, and the chain of events
is presented as a set of event segments. Although
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there are a number of approaches for event prediction,
none of them considers the sentiment within the text
for event prediction. The importance of the sentiment
within the text is illustrated in Fig. 1.

To this end, we propose a Deep Learning-based
Event Predictive Model (DLEPM) for a narrative pro-
duction system. First, we leverage natural language
techniques for text preprocessing on the gigaword NYT
corpus. Second, we extract the events using the state-
of-the-art model. Third, we leverage SentiWordNet to
compute the sentiment score of each event as the
author’s emotion within an event may reflect the
subsequent events. Fourth, we leverage word2vec to
convert the events into a digital vector. Finally, we
pass the digital vector and emotion score of each event
to a deep-learning classifier to predict the subsequent
events. The evaluation results suggest that DLPM sur-
passes the state-of-the-art and improves the accuracy
score by more than 26 percent.

II. RELATED WORK

Scripts have long been a focal point of AI research
[1]. Traditionally, these scripts involve manually en-
coding the sequence of events within knowledge bases,
which can then be utilized for various tasks such as
inference. The concept of scripts is also interconnected
with studies in linguistics and psychology, occasionally
referred to as frameworks (Fillmore, 1982). The re-
searchers [1], [15] proposed "script theory" as a partial
solution to the problem of illustration. They suggest
that some of our knowledge about hundreds of stereo-
typical attitudes is organized with routine activities.

Chambers and Jurafsky [3] pioneered work in script
induction [4], [9], [12], [16]. However, Shangwen et al
[14] focused on the modeling of narrative event chains

A. Representation of Scripts
In the realm of event representation, Chambers and

Jurafsky defined narrative events as threefold of the
"no" model dependency [3]. They employed a syntactic
parser and coreference analyzer to organize narrative
chains centered around the main actor or protagonist,
extracting events that share a common protagonist in
the text. They referred to these hierarchies of partici-
pants and events as scripts [1] or Fillmore frameworks
[17]. Jans et al. adopted a similar simplistic event
representation but introduced a new model that yields
more accurate predictions on test data [4]. These meth-
ods solely focus on modeling the actions of a single
participant, specifically referred to as the protagonist.

Chambers and Jurafsky extended their approach to
encompass multiple participants by modeling events
involving all entities within a document [10]. How-
ever, their approach falls short in capturing the in-
teractions between these entities. Balasubramanian
et al. highlighted potential weaknesses in represent-
ing event chains solely from the perspective of the
protagonist and proposed an alternative representa-
tion using <arg1, relationship, arg2>, where arg1 and
arg2 denote the subject and object, respectively [18].
This alternative approach addresses the limitations
and inconsistencies found in the protagonist-centric
representation. This representation was inspired by
the extraction of open information [19] and provides
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more comprehensive functionality for pairs of model-
ing events. Pichotta and Mooney [5] adopted a similar
idea and used a tuple verb (subject, object, entity)
to represent an event. A multi-argument event model
encodes more representation of the richness of events.
They have proven empirically the usefulness of multi
arguments in the event. Its representation is used
when adding multiple arguments to an event by sub-
sequent work such as Modi el al. [2] and Granroth-
Wilding and Clark [9]. Wang et al. [12] follow Pichotta
and Mooney [20] to represent their events. We also
follow the Pichotta and Mooney [20] in our event
representation model with several arguments includ-
ing adverbs to represent the event. We consider the
adverb in event representation because we have to
apply sentiment analysis to events.

B. Modeling od Scripts
In the context of scripting modeling, current meth-

ods (low-order and high-order models) calculate rela-
tionships between event pairs and consider the chrono-
logical order of events. However, the previous work
used separate representations of events and the es-
timated relationships of events by statistical count-
ing, e.g., the researchers [3]–[6] exploited PMI, skip
bi-gram probabilities, and skip n-grams to calculate
event relationships. Being multi-argument structures,
count-based methods can suffer from scarcity prob-
lems. To resolve this problem, Rudinger et al. [6]
learned to integrate events as a byproduct to form a
logarithmic language model of events.

Granroth-Wilding and Clark [9] benefited from
Mikolov et al. [8] to form a superposition of events and
arguments in a pseudo sentence. Modi et al. [2] used
the embedding of words to merge the verbs and argu-
ments directly, using a hidden layer to automatically
integrate word combinations into structured event vac-
cinations. Wang et al. [12] followed Modi et al. [2]
and use a hidden layer to learn the composition of
event arguments by word embedding, thus configuring
the composition function in the learning process in
the chain of events. By alleviating the problem of
the under-representation of events, neural methods
can capture temporal order between events that go
beyond n-gram omission. Wang et al. [12] integrate
the benefits of learning through strong ordering and
learning event pairs using hidden LSTM states as a
representation of the event properties present in the
calculation of event pair relationships. In addition,
they use a memory network model to weigh current
events, to get better results on the equal weighting
method of existing models. However, Wang et al. [12]
and Shangwen et al. [14] noted that there is an event-
rich relationship chain in the chain of events that can
provide benefits for predicting the next event. Conse-
quently, they develop a self-attention mechanism to

extract events from different segments and represent
the chain of events as a combination of event segments.

Hu et al. [21] proposed an LSTM hierarchical model
that incorporates word sequences and event sequences
to predict what will happen next. Regneri el al. [22]
compiled natural language descriptions of specific
event sequences for volunteer texts and build a tem-
poral script graph. Orr et al. [7] use hidden Markov
models to create a transition graph and make script
conclusions based on the probability of state transition.
Lee et al. [23] designed a narrative event evolution-
ary graph (NEEG) to represent the rich relationships
between events and provided a scaled-graph neural
network (SGNN) to model interactions between events
and knowledge of the representation of events.

C. Evaluation of Scripts
Chambers and Jurafsky [3] proposed the Narrative

close task, which requests a missing event in a series
of gap-related events. This task was adopted by several
subsequent works [4]–[6] to compare the results with
Chambers and Jurafsky [3]. One issue of the narra-
tive cloze test is that sometimes there may be many
sensible answers, but there is only one standard an-
swer, which can make the evaluation of system results
manually expensive. To solve this problem, Modi et
al. [2] proposed an Adversarial Narrative Cloze (ANC),
consisting of a series of pairs of real and corrupt
events. Granroth-Wilding and Clark [9] proposed a
Multi-CNC (MCNC), which involves selecting the next
event most likely from a group of candidates from a
series of events. Wang et al. [12] and Shangwin et
al. [14] both chose MCNC to compare different models.
We also choose MCNC to measure our assessment and
compare the impact of different models to predict the
script event. Although there are a number of available
approaches for event prediction, DLEPM differs in that
it considers the sentiment within the text to improve
the accuracy of event prediction.

III. APPROACH

A. Extraction of Event Chains
DLEPM is inspired by the existing work [3], [9],

[10]. We utilize the New York Times (NYT) segment
of the Gigaword corpus1 to extract events. Following
the methodology of Chambers and Jurafsky [10], we
employ Stanford CoreNLP for Part-of-Speech (POS)
tagging, dependency parsing, and co-reference resolu-
tion. Similar to the approach taken by Mark Granroth-
Wilding and Stephen Clark [9], we extract the predi-
cate adjective, lemmatized verb, and their dependency
relationship. We exclude stop-events that have English
stop-words as predicates. Note that we used nyt_eng
documents for our experiments.

1https://catalog.ldc.upenn.edu/LDC2003T05
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B. Baseline Models
To compare the performance of DLEPM, we extract

the event chain using state-of-the-art models.
1) Chambers & Jurafsky 08: We first consider the

C&J08 model. It represents each event e by its pred-
icate p(e) and the dependency relation d(e) to entity
e of the chain, which can be represented as pg(e) =
(p(e), d(e)). For example, C&J08 extracts the event
chain from the text "Robbers made a big score, flee-
ing after stealing more than $300,000 . . . a gun ap-
proached and ordered them to lie down . . . " as (service,
subj), (report, subj), (put, subj), (lie_down, subj), . . . ,
where entities and predicates in the given text are
Wells Fargo armored-truck guards, . . . and service(x0,
ATMs), report(x0), . . . , respectively.

For each given pair of events, we use multiple choice
narrative cloze (PPMI) as a relatedness score and
compute the co-occurrence in the same chains while
training. To predict the next event ne, the score of the
event s(ne) is computed by adding its PPMI with the
n events that can be defined as

s(ne) =
n−1
j=0

ppmi (pg(ne), pg (ej)) (1)

2) Bigram: To find out the probability of each
predicate, we exploit bigram [4] that considers max-
imum likelihood. We exploit bigram as its perfor-
mance against narrative cloze is significant rather
than C&J08. However, we employ Laplace smoothing
to compute the unigram probabilities for the unob-
served event ne that can be defined as

s(ne) =
1

n

n−1
j=0

P (pg(ne)|pg (ej)) (2)

3) Distributional Vectors: We exploit latent seman-
tic indexing (LSI) [24] for the representation of events
as a vector space model to assign a score to the indi-
vidual event and to overcome the limitation (assigning
a score to pairs of events) of C&J08. We create a
matrix to compute the frequency count of predicates
in which each row represents a predicate and each cell
represents the frequency count of the predicate. We set
the dimensionality to 300 for the dense representation
of each predicate. We compute the cosine similarity of
the predicate of the next event ne that can be defined
as

s(ne) = cosine




n−1
j=0

Spg(ej), Spg(ne)


 (3)

4) Word2vec Representations: We exploit
word2vec [8], [25] to convert the predicate information
into digital vectors. We generate digital vectors from
verb only and verb+argument. word2vec is introduced
for efficient learning embeddings for deep learning
models. Note that, we use the default dimension
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300 for the vectors. Such embeddings provide the
relationship between two events. The verb only model
(noted as Mikolov-Verb) only considers verb of the
event ne for the representation, adds the given events
w, and computes the cosine similarity that can be
defined as

s(ne) = cosine




n−1
j=0

wp(ej), wp(ne)


 (4)

In contrast to Mikolov-Verb, the verb+argument model
(noted as Mikolov-Verb-Arg) add the vectors from w for
its verb and each of its argument for the representa-
tion of ne.

s(ne) = cosine




n−1
j=0

wp(ej) + wa0(ej) + wa1(ej) + wa2(ej)

Wp(ne) +Wa0(ne) +Wa1(ne) +Wa2(ne)


(5)

We also learn embeddings from event chains in which
vectors of events that occur in similar chains are close
together. We exploit a skipgram model (noted as W2V-
Pred) with settings: window size = 5 and vector size =
300. Furthermore, we add argument words for vector
representation (noted as W2V-Pred-Arg) with settings:
window size = 15 and vector size = 300. Thus, the
event representation ne can be computed by adding
the vectors of the predicate and each of the arguments
that can be defined as

s(ne) = cosine




n−1
j=0

Wp(ej):d(ej) +Warg:a0 (ej)+

Warg:a1 (ej) +Warg:a2 (ej)

Wp(ne):d(ne) +Warg:a0 (ne) +Warg:a1 (ne) +Warg a2(ne)


(6)

5) Event Compositional Representations: We exploit
W2V-Pred-Arg to learn the embeddings. In training,
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both word vectors and argument composition Event-
Comp function weights are modified for a pair of events
but their parameters are tied. Therefore, we learn the
single event representation that minimizes the object
function and can be defined as

1

m

m∑
i=1

− log (pi × coh (e0i, e1i)+

(1− pi)× (1− coh (e0i, e1i)) + λL(θ)

(7)

where, pi = 1 represents positive next event and 0
for negative, coh(e0i, e1i) represents the output of the
model for the ith training pair and L(θ) represents the
regularization-term on all weights.

C. Deep Learning-Based Event Prediction Model
(DLEPM)

1) Sentiment Based Event Compositional Represen-
tations: An overview of DLEPM is shown in Fig. 2.
We train a deep learning-based network (Senti-Event-
Comp) to learn the composition of predicates, the
sentiment of the predicates, and arguments for an
event representation. We exploit the W2V-Pred-Arg
that contains the large vocabulary of word vectors
corresponding to words of predicate and argument.
We concatenate the vectors (computed from word2vec)
related to the positions of the predicate and argument
of an event, and the sentiment (a scalar vector) that
is computed from SentiWordNet using the predicate
of the event. We input the concatenated vectors as
input to the first layer. Note that, we use zero vector
for empty arguments and non-vocabulary words. We
train the model by passing two events at the same
time to the layers, where each middle layer has a tanh
(activation function), whereas the final layer has a
sigmoid (activation function). The final layer generates
a coherence score (coh). It defines whether the given
pair of events are from the same chain or not. It can
be defined as

1

m

m∑
i=1

− log (pi × coh (e0i, e1i)+

(1− pi)× (1− coh (e0i, e1i)) + λL(θ)

(8)

where, pi = 1 represents the positive event and 0
for the negative (Note that, training of the model
needs positive and negative events for pairs of events.
To make a positive pair, we randomly select e1i
randomly from the same event chain, whereas we
select e1i randomly from the other event chain),
coh(e0i, e1i) represents the output of the ith training
pair, L(θ) represents the regularization term. Note
that, a pair of input events can be represented as
(v1, s1, o1, ii, Vsen1

, Ssen1
, v2, s2, o2, i2, Vsen2

, Ssen2
).

For the parameter setting of the model, we set
dimension = 300 for word2vec, 400 and 200 as sizes of
two hidden layers in Senti-Event-Comp, dropout = 0.2,

TABLE I
THE PERFORMANCE OF DLEPM

Model Accuracy

Chance Baseline 20.0%

C&J08 22.2%

Bigram 23.9%

Dist-Vecs 23.6%

W2V-Pred 23.6%

Event-Comp 26.9%

DLEPM 29.2%

epoch = 8, learning-rate = 0.01, λ = 0.01, and batch-size
= 1000.

2) Prediction: DLEPM predicts the next events ne
using the average of the pairwise scores with the event
as follows:

s(ne) =
1

n

n−1∑
j=0

coh (ne, ej) (9)

IV. EVALUATION

A. Results
Table I presents the performance of each of the

comparison models on the given testing events. Note
that we only used 1 file from 195 data files of nyt_eng
for our initial experiment. The selected file contains
17,593 files and the data in the file is arranged by day
and month of the year 1994.

The results suggest that C&J08 and bigram are
better than the chance baseline, however, the im-
provement is not significant. Moreover, although the
performances of Dist-Vecs and the models related to
the Mikolov embeddings are better than the chance
baseline, it does not catch the performance of C&J08.

Furthermore, the performance of the models that
exploit vector representation generated by word2vec in
contrast to Mikolov embeddings, is significantly better
than C&J08, Dist-Vecs, Mikolov-Verb, and Mikolov-
Verb-Arg. In contrast to simple vector representation
generated by word2vec, a complex composition of ar-
guments and predicates Event-Comp achieves further
improvement in accuracy as compared other existing
models.

However, DLEPM achieves significant improvement
in contrast to the best existing model Event-Comp. The
improvement in accuracy is up to 8.55% = (29.2% -
26.9%) /26.9%.

Based on the preceding analysis, we conclude that
the introduction of the sentiment of events signifi-
cantly increases the performance.

V. CONCLUSION

For the prediction of the next event from the text,
we propose a Deep Learning-based Event Prediction
Model (DLEPM). We consider MCNC task for the
comparison of DLEPM with state-of-the-art models.
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We notice that although word2vec embeddings can be
used for the representations of the events for the im-
provement in accuracy, the sentiment of the events has
a significant impact on performance improvement. We
input the word embeddings and sentiment of events to
learn the coherence function and composition function
that is based on sentiment, predicate, and argument
for training. The sentiment value of the events used in
DLEPM increases the ability to capture the non-linear
interactions between predicates and arguments.

In future, we would like to investigate the perfor-
mance of the mentioned methods by incorporating
the POS tagging information in the input as POS
tags have the structural information of the text. We
are interested to combine the semantic information
word2vec and the syntactic information POS tags for
the event prediction.
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