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Abstract—The rapid evolution of cybersecurity threats poses
formidable challenges for effective malware detection. Traditional
methods often struggle to keep pace with the continuously
changing landscape of new malware variants. To address this
issue, researchers have turned to machine-learning techniques
to optimize malware detection. Yet, these approaches have
overlooked the fact that evasive malware is meticulously crafted
to elude detection through tactics such as exploiting software
vulnerabilities, utilizing encryption, and employing obfuscation
techniques. Malware authors have a strong incentive to attack
malware detection systems, yet the features and methods that they
exploit are limited. We propose a model named GLEAM- GAN
and LLM for Evasive Adversarial Malware. This model infuses
hex code and opcode features with LLM (Large Language Model)
embeddings and GANs (Generative Adversarial Networks) to
generate synthetic samples that closely resemble evasive mal-
ware to bypass black-box machine learning detectors. Through
extensive evaluation, our model achieved an average evasion
rate increase of 22.6%, demonstrating its ability to effectively
attack detection systems. By expanding the space for adversarial
malware generation, we give modern detection systems the
capability to counter the nuanced tactics of evasive malware, thus
enhancing proficiency in preempting and neutralizing potential
threats with heightened precision.

* Index Terms—Generative adversarial networks, Large Lan-
guage Models, Cybersecurity, Adversarial Malware Examples

I. INTRODUCTION

Within the intricate ecosystem of computer systems and
networks, the constant presence of malware poses an imminent
threat to the security landscape. Spanning a diverse array of
forms, including viruses, worms, trojans, ransomware, and
spyware, malware orchestrates a sophisticated infiltration of
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979-8-3503-1327-7/23/$31.00 ©2023 IEEE

Gordon Jin*
Seven Lakes High School
Katy, Texas
gordonj2016 @outlook.com

Andrew Han
Westlake High School
Austin, Texas
andrewhanlt@gmail.com

Kinjal Chaudhari
University of Illinois Urbana-Champaign
Champaign, Illinois
chaudharikinjal2004 @ gmail.com

53

Bisti Potdar*
Vernon Hills High School
Vernon Hills, Illinois
bisti12018 @ gmail.com

Anusha Shringi
Lynbrook High School
San Jose, California
Anushashringi @gmail.com

Saurav Kumar
University of lllinois Urbana-Champaign
Champaign, Illinois
sauravk4 @illinois.edu

digital infrastructure, highlighting the criticality of robust de-
tection and mitigation strategies in the realm of cybersecurity.

Traditional approaches to malware detection have primarily
relied upon the matching of known patterns or signatures
associated with documented malware instances. However, this
approach implies that those malware instances have been
previously detected, by which point major damage will have
been inflicted on the machine. Furthermore, this flaw renders
the approach ineffective in discerning emerging and novel
malware variants, consequently exposing vulnerable systems
to the dangers of highly sophisticated attacks. As such, a
pressing need has emerged for advanced detection techniques
capable of effectively identifying evasive malware.

In recent years, the research community has diverted its
attention toward harnessing the potential of machine learn-
ing algorithms, notably the practices of deep learning and
neural networks, to bolster the efficacy of malware detection
mechanisms. [1],[2] These cutting-edge approaches leverage
the innate capacities of pattern recognition and anomaly
detection to expose potentially malicious behaviors. While
exhibiting promising outcomes in terms of detection accuracy
enhancement, they remain constrained when confronted with
the evasive characteristics of malware deliberately designed
to evade contemporary detection systems, known as adver-
sarial malware examples. [3],[4] This spurred a new field of
adversarial malware generation using gradient-based GANs
(Generative Adversarial Networks) pioneered by Goodfellow
et al. [5] Subsequently, Zhong et al. proposed MalFox, which
creates adversarial Windows Portable Executable files, or PE
files, without the need to convert their features into an image,
as is done commonly with the traditional GAN. [6] Hu et al.
proposed MalGAN which extracts features from API function
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calls that are translated into a feature set to generate adversarial
examples with GAN. [7] Zhu et al. used n-gram feature
extraction on hex codes as a simple static analysis approach
to adversarial malware generation.[8] However, many of these
approaches are limited by their scope of feature sources and
only explore possibilities with the GAN model- a model
susceptible to mode collapse and catastrophic forgetting.

To address the challenges imposed by sophisticated malware
detection systems as well as limited adversarial malware
generation tactics and feature sources, this research project
pursues developing highly functional GANs as well as LLMs
combined with a synthesis of hex code and opcode features to
generate adversarial malware examples through our GLEAM
model. This specifically structured framework generates syn-
thetic malicious data, with the sole purpose of eluding de-
tection systems. Through the creation of realistic and novel
evasive malware samples, this project aims to provide the
cybersecurity field with a robust evaluation framework to
scrutinize the accuracy of detection systems, thereby fortify-
ing overall defense against the incessant onslaught of cyber
threats.

Utilizing a balanced dataset, our research incorporates novel
techniques to address the inherent complexity of extracting
local features from such malicious agents. Drawing upon the
profound knowledge and findings of existing literature, such
as the application of GANs in enhancing the accuracy of
malware classification and the obstacles imposed by static and
dynamic analysis, we strive to maximize the effectiveness of
our approach. Ultimately, the GLEAM framework serves to
bolster cybersecurity defenses and mitigate the ever-growing
threats posed by malicious attacks.

The remainder of this paper is structured as follows: Section
IT discusses the pertinent literature for this field, Section III
describes our approach in detail, Section IV evaluates the
performance of GLEAM, and Section V concludes the paper
with a future research discussion.

II. LITERATURE REVIEW

In 2015, Buczack and Guven conducted a comprehensive
survey focused on cyber analytics for intrusion detection. The
study highlighted three primary approaches: misuse-based
(signature-based), anomaly-based, and hybrid techniques.
Misuse-based techniques excel at detecting known attacks,
but face challenges when encountering novel (zero-day)
attacks. On the other hand, anomaly-based techniques model
normal system behavior and identify deviations as anomalies,
offering the advantage of detecting zero-day attacks, but
burdened with the risk of high false alarm rates. Hybrid
techniques combine both of these approaches to improve
detection rates for known and unknown attacks as a whole.

In the aftermath of the WannaCry malware that garnered
global attention, Lu et al. conducted a study exploring
the value of the BERT model in constructing malware
datasets. They addressed the limitations of existing malware
detection strategies and focused on how difficult it is to
obtain malware samples and their API sequences due to
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obfuscation techniques and the ever-changing variants present
within the malware.[9] The BERT model utilizes a public
API call sequence dataset of obfuscation-free malware as
input, using adversarial training in conjunction to enhance its
performance. It averaged 87 percent accuracy, higher than
other classification methods such as KNN and CNNS.

In 2023, Smith et. al. conducted a research study further
exploring the challenges that malware poses, specifically
due to the increasing amount of malware variants that go
undetected by conventional methods. This study conducted
a comparative analysis of two malware-related datasets,
evaluating their correlation with malware samples. They
were able to achieve a high correlation with the first batch
of data by using both supervised and unsupervised learning
algorithms, such as K-Means and Random Forest. The
Random Forest achieved a 99.88 percent accuracy on the
Malware-Exploratory dataset and a 99.99 percent accuracy on
the CIC-MalMem-2022 dataset. This paper is able to achieve
very high accuracy rates and improve the effectiveness of
malware detection systems, but further research is needed
to explore how these algorithms can be applied to large,
realistic, and more diverse malware datasets.

Jang et al. utilized a GAN model for improved accuracy
and effectiveness in the analysis of malware detection and
classification. [10] This paper introduces global-image-
based local feature visualization and a global and local
image merging approach. They aim to enhance malware
classification by utilizing global and local images generated
from byte and assembly language source files. They achieved
a 100 percent accuracy in unobfuscated malware datasets and
a 96.87 percent accuracy in obfuscated malware. First, they
extracted the ASM/byte files and then created global and
local images. The global images included information about
the malware obtained from binaries, while the local images
presented information such as API functions and opcodes.
[11] The GAN model then merged the global and local
images, ultimately training a Convolutional Neural Network
on malware classification.

III. METHOD

This section outlines the rationale behind our dataset se-
lection, the pre-processing steps for that specific dataset, the
black-box detectors and how they were paired with the GAN,
and finally, our large learning model.

A. Dataset

The PE files were sampled from the PE Malware Machine
Learning Dataset by Michael Lester published by Practical
Security Analytics LLC. To create samples of evasive mal-
ware, we obtained raw labeled portable executable files from
Michael Lester’s dataset of Practical Security Analytics [12].
Specifically, from the total of 200000 PE files, we randomly
sampled 5000 malicious and 5000 benign files, of which 70%
is used as the training set and 30% as the testing set.



B. Black-box detector

The dataset was run through five anti-malware machine-
learning algorithms considered as the black-box detector
whose internal parameters are invisible: Logistic Regres-
sion (LR), K-Nearest Neighbors (KNN), Random Forest
(RF), Decision Trees (DT), and Support Vector Machine
(SVM).[13],[14],[15] The True Positive Rates (TPRs) on each
of these detectors were 84%, 78%, 92%, 81%, and 93%,
respectively.

C. GAN

GLEAM applies GAN to generate adversarial malware
examples. We expand the feature extraction process by incor-
porating hex code and opcode n-gram features in our feature
matrix.

Malicious
Data

Benign
Data

200-dimensional
benign features

800-dimensional
malicious features

Generator

1000-dimensional
adversarial malware
samples

Black-Box Detector

Fig. 1. The architecture of the GLEAM GAN

1) N-gram: In the field of Natural Language Processing
(NLP), n-grams are utilized for text generation such as in
the recent chatbot, Chat-GPT. It analyzes the frequency and
co-occurrence patterns of a sequence of words, providing
crucial information about relevant phrases in a document. We
borrow this tool for cybersecurity purposes. N-gram feature
selection removes the step of translating the PE files into a
different form, such as the popular method of making malware
“images”’[16], and allows the model to work on the raw data
itself.

2) Hex code: The first source of feature extraction used
in our GLEAM model is the hexadecimal representation of
machine code. Each hexadecimal value contains meaningful
information about the PE file, such as instruction codes and
data. We use a simple Python program to extract hexadecimal
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codes from the PE files, and 6 grams are obtained as they
perform best in malware classification[17].

3) Opcodes: The second source of feature extraction for
our GLEAM model is the assembly language source code,
which contains the symbolic machine code of the PE files.
Opcodes are contained within the assembly code and represent
the rudimentary function calls made by the program. They
are similarly extracted in Python by reading the first non-byte
token in each line of the assembly file. 2-grams are selected
to represent opcode features as they are shown to have the
highest accuracy in malware classification[18].

4) Feature extraction: We combine hex codes and opcodes
into a 1000-dimensional feature matrix. [19] We use a 600:100
split between malicious and benign hex codes and a 200:100
split between malicious and benign opcodes. This feature
matrix is used to train the GLEAM GAN.

5) GLEAM: We combine an 800-dimensional malicious
feature vector with a 200-dimensional benign feature vector
and map each sample, benign or malicious, to the new 1000-
dimensional vector. To generate adversarial examples and
maintain malicious content, we take the logical ‘OR’ operation
between malicious and benign feature matrices. The new
feature matrix is fed into the generator. The GLEAM GAN
consists of a generator and a black-box detector. The generator
is a feed-forward neural network that uses CopulaGAN, a
variation of the CTGAN, which is introduced in the SDV
open-source library. [20] It uses the Cumulative Distribu-
tion Function (CDF)- based transformation, which is applied
through GaussianCopula, allowing it to learn the correlation
between random variables[21].
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Fig. 2. Hexadecimal representation of PE binaries

D. LLM

1) Language Model Initialization: As a preliminary step,
the language model took in grayscale images of the hexadec-
imals. [22],[23] It extracted the grayscale representation and
translated it back into its corresponding hexadecimal strings.
To facilitate the generation of synthetic hexadecimals, a pre-
trained language model (LLM) was employed. The choice of
language model was instrumental in achieving coherent and
contextually relevant synthetic data. In this regard, the GPT-3
language model, made accessible through the OpenAl API,



was selected for its demonstrated prowess in text generation
tasks.[24] For the purpose of this study, the following speci-
fications were configured:

Model Name: “EleutherAl/gpt-neo-1.3B”[25]

Tokenizer: The AutoTokenizer component from Hugging
Face’s Transformers library

Model Architecture: The AutoModelForCausalLM mod-
ule from Hugging Face’s Transformers library, configured
as a decoder

[ Grayscale hexadecimal images }

[ Benign_img ] [ Malicious_img ]

File names (csv)

GPT3
EluetherAl/gpt-neo-1.38

Synthetic Benign Synthetic Malicious
Hexadecimals Hexadecimals

Fig. 3. The architecture of the GLEAM LLM

LLM

2) Hexadecimal Generation: The generation process re-
volved around presenting the language model with hexadec-
imal strings derived from grayscale image data, which were
made from the pe files from the dataset. Prior to inputting these
hexadecimal strings, it was essential to preprocess them to
ensure compatibility with the model’s tokenizer. Subsequently,
the language model was invoked to generate sequences of
hexadecimal characters, which, in turn, contributed to the
generation of longer hexadecimal sequences.

E. Iterative Generation and Validity Filtering

The generation of synthetic hexadecimals was done itera-
tively to extend the length of each sequence. At each iteration,
a portion of the text was presented to the language model,
which generated additional segments of hexadecimal data in
return. Post-generation filtering was carried out to maintain
validity and coherence in the generated hexadecimals.

Tokenization LLM iterations

___________

\

1
1
Hex — Text Tokens

I
4

Initial
hexadecimal

Generated
Hexadecimal

,..__-
) i

_____________________

Fig. 4. Structure of tokenization

Extraneous characters filtered out as the filtering process
left only hexadecimal values (0-9, A-F) to be retained. The
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file names generated by the CNN were used as indicators for
which images should be looked at when generating synthetic
samples. The file names produced by the CNN were where
the classifiers failed, so to create evasive samples, the LLM
was trained on these missed samples. These images were then
looked at for their hexadecimals, and used to generate more.

E. Storing Organized Synthetic Data

The generated hexadecimals were saved as ".bytes” files,
effectively simulating synthetic image data. A structured folder
arrangement was implemented to ensure clarity in the differen-
tiation of synthetic data based on their classification (benign or
malicious). This also ensured an easier classification process
when put through the black-box detectors such as logistic
regression and random trees. For example, hexadecimals orig-
inating from the malware images folder were stored in their
own synthetic malware folder. This systematic organization
creates efficient tracking and management. In the end, there
were 105 synthetic samples and 110 malware samples created.

IV. RESULTS/DISCUSSION

In this section, we present the results of our study on
generating synthetic malware samples using two different
methods: Generative Adversarial Networks (GANs) and Lan-
guage Models (LLMs). The objective of this study was to
evaluate the evasiveness of the synthetic malware samples
generated by each method by assessing their detection rates
across various classifiers commonly used in malware detection.

Two different methods were explored for generating syn-
thetic malware samples: GANs, and LLMs. By employing
these methods, we assessed how evasive the generated syn-
thetic malware samples were with respect to each method
through the use of classifiers. The experimental design con-
sisted of passing the synthetic malware samples through a bat-
tery of classifiers and evaluating their classification accuracy.
We then compared the performance of the GAN-generated and
LLM-generated malware samples to determine which method
yielded more evasive samples.

In our use case of malware detection, evasiveness refers to
the ability of generated malware samples to evade detection
by classifiers. A higher detection rate or accuracy indicates
that the classifiers are able to correctly identify the synthetic
malware samples, which implies lower evasiveness. Thus, a
lower detection rate or accuracy suggests that the synthetic
malware samples are successfully evading detection, resulting
in higher evasiveness.

In our experiments, we use the True Positive Rate (TPR)
to assess accuracy. The TPR is the proportion of malicious
samples that were accurately classified as such.

A. GANs

The classifiers’ performance on GAN-generated samples
varied across different models. For instance, the Logistic
Regression classifier achieved an accuracy of 57 percent
on GAN-generated samples, while the Random Forest and
Decision Trees classifiers achieved accuracies of 74 and 66



TABLE I
TPRS OF DIFFERENT CLASSIFIERS ON ORIGINAL DATA AND GLEAM

Original (%) GAN (%) LLM (%)
LR 84 57 61
RF 92 74 63
DT 81 66 62
SVM 93 83 59
KNN 78 47 58

percent respectively. The SVM classifier achieved an accuracy
of 83 percent, and the K-Nearest Neighbors (KNN) classi-
fier exhibited an accuracy of 47 percent on GAN-generated
samples. These results suggest that GAN-generated samples
possess certain traits that challenge the classifiers’ ability to
distinguish them from genuine malware instances, making
them potentially more evasive.

B. LLMs

When employed for generating synthetic malware samples,
LLMs exhibited the ability to produce hex sequences that
closely resemble the syntax and structure of real malware code.

Evaluation of the classifiers on LLM-generated samples
resulted in varied classification accuracy. The Logistic Re-
gression classifier achieved an accuracy of 61 percent, while
the Random Forest and Decision Trees classifiers achieved
accuracies of 63 and 62 percent respectively. Surprisingly, the
SVM classifier exhibited a lower accuracy of 59 percent on
LLM-generated samples, and the KNN classifier achieved an
accuracy of 58 percent. The lower classification accuracy on
LLM-generated samples indicates that these samples possess
more evasive characteristics, as they challenge the classifiers’
ability to correctly classify them.

C. Discussion

There are many advantages associated with each individual
approach. Firstly, the GAN was able to excel at producing
a variety of diverse samples mimicking the statistical prop-
erties of the original dataset, whereas the LLM focused on
creating coherent and structured samples that modeled after
real malware patterns. Additionally, the lower classification
accuracy observed on LLM-generated samples suggests their
potential for being more evasive, as they were able to closely
replicate traits present in genuine malware. This is significant,
as it implies for improving the robustness of malware detection
systems by augmenting training datasets with LLM-generated
samples.

V. CONCLUSIONS

Our model, GLEAM, is used for evasive, adversarial mal-
ware generation. We achieved this goal by increasing the
average evasion rate by 20.2% with GANs and 25.0% with
LLMs, demonstrating the possibilities of expanded feature
sources and even LLMs for adversarial examples. Through
this investigation, we reveal the vulnerabilities in machine-
learning-based malware detection algorithms.
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In future works, we encourage the development of novel
malware detection approaches, such as safe dynamic analysis
of malware PEs. Further research could focus on optimizing
and fine-tuning the model’s architecture to improve its capacity
to replicate the nuances of real evasive malware. Finally,
future research on the incorporation of additional sources and
technologies beyond hex code and opcode features could help
to broaden the field of adversarial malware development.
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