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Abstract—The Internet of Things (IoT) encompasses a wide
range of applications; despite that, some challenges persist and
require further research and development. One such challenge
is encountered in sensing devices, particularly in Internet of
Video Things (IoVT) applications that demand high-capacity
wireless transmission. These applications face limitations in com-
putational capability and energy consumption of users, posing
significant obstacles to overcome. Mobile edge computing (MEC)
has gained attention as it offers potential solutions by offloading
complex tasks to assist users. However, the line-of-sight (LoS)
issue between users and base stations (BS) caused by blocking ob-
jects remains a challenge in MEC. To address latency challenges
in IoVT communication affected by obstacles, a collaborative
framework between reconfigurable intelligence surfaces (RIS)
and task offloading techniques in MEC, specifically in IoVT
networks, is proposed. This collaboration aims to optimize the
performance and efficiency of IoVT systems by harnessing the
combined advantages of RIS and task offloading strategies.

Index Terms—internet of video things (IoVT), mobile edge
computing (MEC), reconfigurable intelligence surfaces (RIS),
task offloading

I. INTRODUCTION

The Internet of Things (IoT) involves interconnection
and communication between devices, sensors, and objects
(Things). As IoT covers a wide range of applications, some
difficulties require research efforts and further development.
One of the difficulties occurs in sensing devices such as mul-
timedia sensors [1], audio-visual cameras [2], and 3D cameras
in the Internet of Video Things (IoVT) applications. In video
applications, video encoding and processing are complex and
computationally intense processes that are often unstructured
and need additional processing [3]. Moreover, the size of this
multimedia data requires extremely high networking capacity
[4], which might cause high latency.

Additional challenges happen when there is an obstacle
between the sender and receiver in a wireless communication
system. High-frequency transmissions are particularly suscep-
tible to obstacles [5], leading to decreased signal quality and
lower transmission rates. This obstacle-induced degradation
affects not only the overall performance of the communication
link but also impacts users that are positioned in non-line-
of-sight (nLoS) locations relative to the base station (BS).
Consequently, the presence of obstacles introduces increased

latency and can have a detrimental effect on the quality and
reliability of the wireless communication system.

To address the latency challenges in wireless communi-
cation scenarios with obstacles, reconfigurable intelligence
surfaces (RIS) are employed alongside base stations (BS). As
RIS has the capability to enhance the signal-to-noise ratio
(SNR), thereby impacting the overall capacity of the system.
The contribution of this paper can be described as follows:

• Task Offloading scheme in a RIS-assisted edge computing
system in IoVT networks. Some end-users may experi-
ence poor signal conditions due to nLoS conditions. In
contrast to other studies, this work takes a more realistic
approach by considering downlink (DL) transmission. In
this work, RIS are deployed to improve both uplink (UL)
and DL rates for minimizing the latency that occurs when
user need to offload their tasks.

• Optimizing the task placement for the end-user based on
the end-user task completion time and energy consump-
tion, which depends on the upload time, computation
latency, and result transmission.

The main focus of this study is to establish a collaborative
framework between RIS and task offloading techniques in
mobile edge computing (MEC), with a specific emphasis on
Internet of Video Things (IoVT) networks. This collaboration
aims to optimize the performance and efficiency of IoVT
systems by leveraging the combined benefits of RIS and task
offloading strategies.

II. PROPOSED SYSTEM

A. System Model

The proposed RIS-assisted edge computing system can be
seen in Fig. 1. The set of user in user clusters is denoted as
k ∈ {1, · · · ,K}, where K is the total number of users. Due
to each users CPU limited computational capacity, the user
could offload the data to the computational node in the base
station (BS).

Consider the index of a task from total task L is denoted
as i ∈ [1, · · · , L]. The task offloading placement decision
variable for user as xi,k which can be divided as xi,k = 1,
task offloaded to BS; xi,k = 0, task processed locally.
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Fig. 1. Proposed system model.

B. Communication Model

The RIS with finite elements N is deployed to assist the
users with UL and DL. Let s = [s1, · · · sK ]T ∈ CK is
the modulated symbol of offloaded task of users k. There-
fore, the transmission signal can be written as sUL =∑K

j=1 qjsj and sDL =
∑K

j=1 wjsj .

The offloaded task to BS is denoted as sUL. qj ∈ C1×Nt

and wj ∈ CNt×1 denote UL and DL precoding, respectively.
Hence, the UL signal of the suggested system is indicated
as: yUL

k = (fH
k +hH

s,kΘhd,k)si+n, where the direct channel
from BS to the user k can be written as follows: fH

k ∈ C1×Nt;
The channel from RIS to the user as follows: hH

d,k ∈ C1×N ;
The optimized RIS phase shifter (in form of diagonal matrix)
can be written as: Θ∗ ∈ diag{θ ∈ C1×N}; channel from BS
to RIS can be denoted as: hs,k ∈ CN×Nt; and additive white
gaussian noise (AWGN) with ∼ CN (0, σ2

n) can be denoted
as: n ∈ C1×K .

In contrast with other works, where only the UL scenario
is considered, in this system, UL and DL are both consid-
ered to minimize latency. Therefore, the optimal signal-to-
interference-plus-noise-ratio (SINR) for the UL transmission
can be written as:

γUL
i,k = qkH̃

H

k

[
W k(Θ, q)

]−1
H̃k, (1)

where qk is user power, and H̃k = f̃
H

k + g̃H
k PΘh̃ is the

estimated channel.
The inter-user interference is denoted as W k(Θ, q) and

written as:

W k(Θ, q) = σ2
nINt +

∑
j ̸=k

qjH̃jH̃
H

j , (2)

where INt is identity square matrix with Nt × Nt size.
Furthermore, the SINR for DL transmission can be expressed
as:

γDL
k =

|H̃H

k wk|2∑K
j=1,j ̸=k |H̃

H

j wk|2 + σ2
n

. (3)

Finally, data rates for both UL can be calculated as follows;
and

rUL
i,k = log2(1 + γUL

i,k ). (4)
While the DL can be calculated as follows;

rDL
i,k = γDL

k . (5)

C. Computation Model

When the user compute the task locally, the computation
latency for local processing is denoted as:

tLi,k =
ωi

f l
k

. (6)

where ωi is the computation amount of the ith task and
f l
k is the CPU computing capabilities of kth user. If the task

is offloaded to the edge server through BS, the computation
latency is denoted as:

tEi,k =
Di

rUL
i,k︸︷︷︸

SendingData

+
ωi

f c
k︸︷︷︸

Computation

+
D′

i

rDL
i,k︸︷︷︸

RecievingData

. (7)

where Di is the data size of each task, while D′
i is the data

size of the task after computation, f c
k is the CPU computing

capabilities in edge server and rUL
i,k , rDL

i,k is the data rate for
UL and DL transmission.

D. Energy Consumption Model

The energy consumption for offloading cases can be ex-
pressed as follows:

εEi,k =
pisi
rUL
i,k

. (8)

Where ϱi is the power coefficient of energy consumed for
each CPU cycle, ri,k is the uplink rate from the user to offload
to the MISO BS. Furthermore, energy consumption for local
task processing can be expressed as follows:

εLi,k = ϱiωi. (9)

III. PROBLEM FORMULATION

To minimize the time latency of the proposed system, the
placement of the task can be formulated as follows:

min.
x

K∑
k=1

[
xi,kt

L
i,k + (1− xi,k)t

E
i,k

]
(10a)

s.t: C1 : xi,k ∈ {0, 1} . (10b)
C2 : ri,k ≥ rmin, (10c)
C3 : εi,k ≥ εmin, (10d)

C4 : xi,kε
L
i,k ≤ αi,kE

i,k
max, (10e)

C5 : (1− xi,k)ε
E
i,k ≤ αi,kE

i,k
max, . (10f)

C6 :

I∑
i=1

ωisi ≤ ωMax
MEC , (10g)

C7 : |Θ| ≤ 1. (10h)
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The main objective of the formulation described in 10a
is to minimize the total duration of the task by optimizing
the placement of the tasks. This placement is determined by
the offloading decision, as indicated in 10b. The offloading
process is subject to a minimum rate and energy requirement,
as expressed in 10c and 10d. Additionally, there are energy
constraints for local computation 10e and offloading 10f, as
well as a computation constraint for the base station 10g, and
RIS phase shifter optimization in 10h.

This formulated problem requires an appropriate offloading
design xi to minimize system latency. In addition, precoding
matrix UL and DL can not exceed Puser and Pmax

BS , respec-
tively. However, the problem in Eq. 10a is considered NP-
hard and non-convex. Therefore, first, the problem can be
decompose as:

min
Θ

K∑
k=1

si,k
rUL
i,k (Θ)

(11)

s.t. rUL
i,k (Θ) ≥ rk, ∀k ∈ K (12)

|Θ| ≤ 1, ∀k ∈ N . (13)

Where rk is the required data rate. However, the problem
is still non-convex and hard to solve. Therefore, a Block
Coordinate Descent (BCD) method is proposed to alternate
the problem. The previous problem can be equivalently solved
as:

min
θ,α

α (14a)

s.t. θHQkθ + 2Re
{
qH
k θ

}
+ dk ≤ α, (14b)

|θ| ≤ 1. (14c)

Where α denotes an auxiliary variable to alternate problem
Eq. 14. Notice that Qk is semi-definite positive, then all
the constraints are guaranteed convex. Furthermore, it can be
easily solved with solver programming, i.e., CVX program.

For the DL suppose the set of precoding vector of K UEs
is denoted as W = [wT

1 , · · · , wT
K ]T and the RIS phase is

Θ = diag{ejθ1 · · · ejθN }. The problem can be formulated as:

max
W ,Θ

η =
R

P
(15a)

s.t. C1 : ξ
∑K

k=1
∥wk∥2 +WBS ≤ Pmax

BS , (15b)

C2 : |θn| ≤ 1, ∀n ∈ [N ], (15c)

Where C1 and C2 are the maximum power consumption of
BS and passive RIS. C3 denotes the feasible sets of N RIS
phase shifter and no amplification factor. However, solving
the problem (15a) is very hard due to its non-convexity.
Therefore, the problem is reformulated by utilizing fractional
programming [6].

TABLE I
SIMULATION PARAMETER

Symbol Value
Area 500 x 500 m
No. of User 5
No. of BS 1
Data size of the visual task [1,7] Mbits
Each user computing capacity [1.5, 2.5] Mb/s
Edge server capacity [7, 10] Gb/s
Bandwidth 200 KHz
BS Power 40 dBm
User Power 0.25 dBm

IV. RESULTS

Simulation setups are divided into full offloading with RIS
and without RIS, optimized task placement with RIS and
without RIS, and local computation. Each parameter can be
seen in Table I. The coordinate location (x, y) of BS and RIS
are (0, 20) and (100, 5), respectively (in meters). The users
location follows uniformly distributed pseudo-random integers
ranging from 0 to 500.

The simulation result can be seen in Fig. 2. According to the
results, local computation achieves a lower computation time
result due to no required communication transmission. Full
offloading with RIS and optimized placement with RIS has a
lower duration compared to full offloading without RIS and
optimized placement without RIS, with a difference of almost
0.5 seconds. Despite the overall task duration result, the local
computation requires far higher energy consumption, whereas
the full offloading requires less energy for computation but
more energy for data transmission and receiving the data. In
addition, the optimized task placement can balance the task
duration latency.

Fig. 2. Task duration with joint optimization of RIS-BS precoding and Task
Placement
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V. CONCLUSION

The result has demonstrated that RIS-assisted MEC com-
putation offloading can assist users who are in non-line-of-
sight (nLoS) positions within IoVT networks. This method
has been shown to minimize latency when users offload their
data. Future research around the topics of dynamic user, UAV
communication, and multiple user clusters can be considered.
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