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Abstract—Orthogonal frequency division multiplexing
(OFDM) systems are susceptible to impulsive noise; in essence,
if the impulsive noise is not addressed adequately, system
performance loss intensifies by the indelible impairment
across OFDM signal bandwidth–thanks to the Fast Fourier
Transform operation. This paper capitalizes on the majorization-
minimization algorithm in tandem with semidefinite relaxation
to avert an overwhelming task engaged in solving a non-convex
optimization problem–engendered by the rule that data borne on
sub-carriers is subject to a digital modulation format. Simulation
results attest the robustness of our proposed receiver: the bit
error rate performance level is promisingly close to that of the
benchmark receiver–which however uses impulse statistics–in
fairly hostile environments.

Index Terms—Majorization minimization algorithm, half-
quadratic optimization, semidefinite programming, OFDM, im-
pulsive noise

I. INTRODUCTION

One of the major barriers to communication system design
is that the ambient noise in contemporary physical channels
is known to be bursty and characterized with a staggeringly
large magnitude relative to the additive thermal noise, subject-
ing communication link quality to unstableness. Orthogonal
Frequency Division Multiplexing (OFDM) is remedial to the
adversity merely to a certain degree–by spreading noise energy
across sub-carriers–through the Fast Fourier Transform (FFT)
operation–but is liable to corruption in fairly hostile contexts.
As opposed to using the statistics of impulsive noise, a simple
approach is to equip the front-end receiver with a memoryless
nonlinearity [1], the performance result of which, however,
substantially hinges upon a threshold value: for instance, [2]
reveals that it is governed by the signal-to-noise ratio (SNR)
level and an offset provider.

Though not in a precisely identical context, the impulsive
noise in sparse MRI signals, was addressed in [3]. This paper
highlights the feasibility of overcoming its negative impact
on bit error rate (BER) performance for OFDM systems
subject to multipath fading without using the impulse statistics
and the level of the SNR ratio as well. By leveraging the
majorization-minimization (MM) algorithm [4] for a half-
quadratic (H-Q) optimization formulated by a semidefinite
relaxation (SDR) problem, our devised framework, through
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extensive computer simulations, appears to effectively identify
the spots corrupted by the impulsive noise and, compellingly
counteract the ensuing performance degradation.

Notation: For any vector z = [z1, . . . , zN ]T ∈ CN , where C
denotes the set of complex numbers, ℜ(z) and ℑ(z) indicate
the real and imaginary parts of z; further, (z)k denotes the k-
th element of z, namely zk; (z)i:j = [zi, . . . , zj ]

T denotes a
subvector of z the elements of which correspond to the range
of the subscripted indices. v∗ represents the complex conjugate
of complex scalar v ∈ C and |v| stands for its complex
modulus. The transpose of z is denoted by zT while the
conjugate transpose of z is zH . The diagonal matrix diag(z)
is constructed by setting its k-th diagonal element to be zk.
The ℓ1-norm of z is expressed as ∥z∥1 =

∑N
k=1 |zk|. The trace

and inversion of matrix X are denoted by Tr(X) and Inv(X),
respectively. A ⪰ B indicates matrix A − B is positive
semidefinite. E(·) stands for mathematical expectation.

II. SYSTEM MODEL

A codeword is partitioned into segments in accordance
with modulation format (the constellation points belong to a
modulation set χ1. After N consecutive modulated symbols
Xm (0 ≤ m ≤ N − 1) are collected, where m is the
sub-carrier index for the inverse FFT (IFFT) implementation
and N is the IFFT size, the output of IFFT is expressed by
xk = 1√

N

∑N−1
m=0 Xmej

2πmk
N , (0 ≤ k ≤ N − 1). To avoid

inter-block interference, the cyclic-prefix (CP) (of which the
length Lp is assumed to be longer than the delay spread of the
multipath fading channel, i.e., Lp ≥ L) is inserted at the output
of parallel-to-serial (P/S) converter. Let the channel impulse
response (CIR) be denoted by h = [h0, h1, . . . , hL−1]. With
perfect time and frequency control at the receiver, the time-
domain received signal sequence (after the CP removal) is sub-
sequently represented by rk = hk⊛xk+ηk (0 ≤ k ≤ N−1),
where ⊛ is the N -point circular convolution, and the aggregate
non-Gaussian interference sample is represented by

ηk = ik + ωk , (1)

where the additive white Gaussian noise (AWGN) is denoted
by ωk. As a convention, the collective impulse noise samples

1For an illustrative purpose, the modulation format is quadrature phase shift
keying (QPSK).
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correspond to i = [i0, i1, . . . , iN−1], and each of the AWGN
noise samples ω = [ω0, . . . , ωN−1] has a flat single-sided
power spectral density of height N0, namely E(|ωk|2) = N0.

As opposed to some prevalently known work, it is worth
noting that this paper addresses performance loss without
assuming the impulsive noise model. One of the popularly
used statistical models to construct the memoryless impulsive
noise is the Gaussian mixture model. For instance, Bernoulli-
Gaussian (B-G) model [5] takes the impulse occurrence
ik = bkgk (c.f.,(1)) into account by introducing an inherent
Bernoulli random variable bk ∈ {0, 1}–with the probability
of impulse occurrence denoted by P (bk = 1) = pb. Further,
the impulsive noise sequence gk , k ∈ {0, . . . , N − 1} is also
an independent and identically distributed (i.i.d.) Gaussian
random process with mean zero and variance N0Γ, where Γ,
a strength indicator of the impulsive noise, is the mean power
ratio between the impulsive noise gk and the AWGN noise
ωk, or abbreviated as IGR . As a consequence, the probability
density function (PDF) of the noise sample ηk (a two-state
Gaussian mixture model) is written as follows:

PBG(x)=(1− pb)CN (x; 0, N0)+pbCN (x; 0, N0(1+Γ)) ,

where CN (x;µz, σ
2
z) = (πσ2

z)
−1exp{−|x−µz|2/σ2

z} is the
complex Gaussian PDF with mean µz and variance σ2

z . To use
the statistical knowledge of the B-G model subjects a refined
receiver to perfectly estimate the underlying parameters pb,
Γ, and N0, all of which generally vary with time, raising the
concern about complexity to a great degree. Another widely
adopted Gaussian mixture model but with infinite states is
Middleton Class-A (MC-A) noise model [6]. The PDF of the
i.i.d. noise sample ηk = bkgk + ωk is expressed as follows:
PMC−A(x) =

∑∞
ℓ=0 αℓ CN (x; 0, φℓ), where αℓ = e−AAℓ

ℓ!

and φℓ = N0(1 + ℓ
ΛA ). Typically, A is referred to as the

impulsive index and Λ is the ratio between the AWGN’s mean
power, and that of the impulsive noise. Noteworthily, bj is a
Poisson variable with mean A and the regarding probability
mass function is expressed as P (bj = ℓ) = αℓ for all
non-negative integers ℓ and the PDF of i.i.d. samples gk is
CN (gk; 0, N0/(ΛA)).

Collecting N successive samples r = [r0, . . . , rN−1] (pre-
ceded by removing the cyclic prefix) yields the following
equation in vector form: r = GX + η , where X =
[X0, . . . , XN−1]

T , η = i + w and G = F ∗Dh, the
product of the FFT matrix F ∗ and a diagonal matrix Dh,
the m-th diagonal element of which, denoted by (Dh)m, is∑L−1

k=0 hke
−j 2πkm

N . After conducting FFT over the received
signal vector r to render R = Fr = DhX + N , where
the frequency-domain noise sequence is N = Fη, where
(N)m = 1√

N

∑N−1
k=0 ηk e−j 2πmk

N . Under the B-G noise
model [5], the PDF of the transformed noise component
(N)m, ∀m ∈ {0, . . . , N − 1} is written as

P(N )m
(x)=

N∑
ℓ=0

(
N

ℓ

)
(pb)

ℓ(1− pb)
N−ℓCN (x; 0, σ2

η[ℓ]) , (2)

where
(
N
ℓ

)
= N !

(N−ℓ)!ℓ! , and N ! is the factorial of an integer
N . Invoking the central limit theorem, the equivalent noise

strength conditioned on ℓ impulse occurrence is measured by
σ2
η[ℓ] = N0

(
1 + ℓΓ

N

)
. Notably, our work aims to recover the

OFDM signaling X contingent on assuming the knowledge
of G. Analogously, the conventional scheme, as dubbed in
Section IV for the sake of BER performance comparison,
recovers signaling simply by executing Inv(Dh)R, prior to
performing demodulation and demapping. Noteworthily, by
neglecting the occurrence of impulsive noise, this entailing
performance result substantially degrades because the PDF
in (2) is far from being the same as that of AWGN assumed
as the sole noise source.

III. ITERATIVE RECEIVER AGAINST IMPULSIVE NOISE

Addressing the rarely occurring impulsive noise, this paper
adopts the penalty function ΦC(δ) =

∑N−1
k=0 ϕα(|δk|) =

α
∑N−1

k=0 ϕ(|δk|), where

ϕ(|z|) = h2
L log

(
cosh

(
|z|
hL

))
, ∀z ∈ C (3)

is the log-cosh function [7]–in this work the input argument
is revised to be a complex modulus thanks to complex-valued
modulated symbols. δ = [δ0, δ1, . . . , δN−1]

T = r−GX is the
estimation error vector. In consequence, the task of recovering
OFDM signaling corrupted by impulsive noise is casted as a
non-convex optimization problem:

minimize ΦC(X)

subject to (X)k ∈ {±1}+ j{±1}, k∈{0,1,...,N−1}. (4)

To tackle the inefficiency of solving (4) in large-scale prob-
lems, the H-Q optimization is enabled by introducing an
auxiliary variable v so as to yield a revised objective function:

ΦC(X) = inf
v

N−1∑
k=0

{
1

2
|δk − vk|2 + ψα(|vk|)

}
,

where ψα(|vk|) = supuk∈C

{
− |uk−vk|2

2 + ϕα(|uk|)
}

.

Given v̂(Xt) from the output of the proposed MM-SDP
algorithm at its latest iteration (where Xt is the OFDM signal
estimate at the t-th iteration), X is updated by searching for
the optimal solution to the following problem:

minimize
X

1

2
(yt −GX)H(yt −GX) + Ψ(v(Xt))

subject to (X)k ∈ {±1}+ j{±1}, k∈{0,1,...,N−1}, (5)

where Ψ(v) =
∑N−1

k=0 ψα(|vk|) and yt = r − v̂(Xt).
Noteworthily, to address the hurdle facing the non-convex
constraint set, a semidefinite relaxation [8] is employed to
facilitate the convex optimization problem formulation:

minimize
S

Tr(LtS)

subject to diag(S) = 12N+1

S ⪰ 0(2N+1)×(2N+1) , (6)

where S = ssT and 12N+1 is a tall vector with all of its
(2N + 1) elements equal to one, and

Lt =

[
Ḡ

T
Ḡ −Ḡ

T
ȳt

−ȳt
T Ḡ ȳt

T ȳt

]
, s =

[
X̄
1

]
, and (7)
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ȳt =

[
ℜ(yt)
ℑ(yt)

]
; X̄ =

[
ℜ(X)
ℑ(X)

]
; Ḡ =

[
ℜ(G) −ℑ(G)
ℑ(G) ℜ(G)

]
.

Following the lead of [8], the estimate X̄t+1 is rendered, given
the solution St+1 to the SDR (6) at iteration t+ 1.

By solving the following unconstrained H-Q optimization
problem,

v̂(Xt+1) = argmin
v

{
(δt+1 − v)

H
(δt+1 − v) /2 + Ψ(v)

}

the update of (v)k, (∀k ∈ {0, 1, . . . , N − 1}),
can be therefore expressed as (v̂(Xt+1))k =
(1− hL tanh(|(δt+1)k|/hL)/|(δt+1)k|) (δt+1)k. Prior to
activating our proposed algorithm, initialization X0 = 0N×1

is performed. Moreover, at each iteration, compute and
update stopping criteria DF = |Jt − Jt+1|/Jt and
DX = ||Xt+1 −Xt||1/||Xt+1||1, where Jt = ΦC(Xt), and
continue iterating until t > NB , a pre-determined integer
number, or both conditions, i.e., DF ≤ λ1 and DX ≤ λ2 are
met, where λ1 and λ2 are tolerances. At the last iteration, the
OFDM symbol is demodulated, and successively demapped
to render an estimated codeword.

IV. SIMULATION RESULTS

The codeword is 512-bit long and the CIR is a ten-
path Rayleigh fading model, the channel gains of which
are independently generated, on a per-OFDM symbol basis,
with unity variance, and are assumed to be known to the
receiver. The α value of the penalty function is set to one,
and hL value (c.f., (3)) to 0.35. The stopping criteria of the
proposed method, dubbed MM-SDP algorithm, are NB = 20,
and tolerances λ1 = λ2 = 0.01. Fig. 1 shows the BER
curves in the scenarios of impulsive noise generated according
to the B-G (Pb = 0.02 & 0.2; IGR = 100) and MC-A
(A = 0.005; Λ = 0.5) models, and which model is chosen
is however unknown to our method. Neglecting the impulse
occurrence, the conventional scheme (see those dashed lines)
fails to recover OFDM signals regardless of the degree to
which the impulsive noise is adverse to our underlying system.
At Pb = 0.02 the BER curve derived from our MM-SDP
mechanism (see the solid line marked by “+”) nearly overlaps
the curve of the benchmark receiver (see the dash-dot line). In
the hostile environment (i.e., Pb = 0.2), the MM-SDP (see
the solid line marked by “◦”) and the benchmark receiver
perform similarly–especially at the regime of high SNR (i.e.,
E(|Xm|2)/N0) levels, reinforcing the notions that our pro-
posed scheme is robust against the unknown and detrimental
impulsive noise. Noteworthily, the gap between the BER curve
induced by the benchmark receiver and that of the clipping
operator [1], [2], [9] (see the dashed line marked by “◦”)
becomes fairly evident at high SNR values: at a 10−4 BER
level roughly 5 dB SNR deficit is observed. Similarly, our
proposed scheme (see the solid line marked by “∗”) is on par
with its benchmark peer (see the dash-dot line) in the MC-
A model. Furthermore, compared with the results in the B-G
model at Pb = 0.2, the performance loss by using the clipping
operator to our MM-SDP and benchmark receivers lessens to
a certain degree in this mild scenario.

V. CONCLUSION

Facing impulsive noise without assuming its statistics, our
proposed approach, a majorization minimization algorithm in
tandem with semidefinite relaxation, solves a half-quadratic
optimization problem–designed for a penalty function aimed
at curbing the impulsive noise–and simultaneously averts an
overwhelming task of seeking an optimum of a non-convex
optimization problem. Simulation results show that our method
is on par with the benchmark peer, which uses the statistics
of impulsive noise, and outperforms the clipping-featured
counterpart, the threshold of which inevitably engages with
not only refined estimation for the signal-to-noise ratio level
and underlying channel gains as well, but also–for the sake
of robustness–a sweep over a reference range, imitating that
computationally demanding off-line task is requisite.
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Fig. 1. Comparison of BERs for various approaches in impulsive noise.
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