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Abstract—In this paper, we consider a cognitive radio (CR)
relay network where a secondary relay network and a primary
network coexist and share the spectrum. We propose a deep
reinforcement learning (DRL) based opportunistic routing (OR)
scheme for the secondary relay network to maximize the packet
reception probability at a destination via multi-hop relay under
the QoS constraint of the primary network. We model the routing
problem of the secondary relay network with the QoS constraint
of the primary network as a constrained Markov decision process
(CMDP). To solve the CMDP, we use a Lagrangian relaxation and
obtain an unconstrained MDP. We use deep Q-learning (DQL) to
solve the problem. Based on Lagrangian relaxation and DQL, the
proposed DRL-based OR scheme finds optimal routing decisions.
Simulation results show that the proposed DRL-based OR scheme
can improve the packet reception probability of the secondary
relay network while satisfying the QoS constraint.

Index Terms—Opportunistic routing, cognitive radio, con-
strained Markov decision process, deep reinforcement learning

I. INTRODUCTION

The cognitive radio (CR) is a key technology to solve
the problem of spectrum scarcity by allowing secondary
users (SUs) to exploit the under-utilized licensed spectrum
of primary users (PUs). With the emergence of CR network
applications such as CR sensor networks, multi-hop routing
is becoming essential for wide area coverage. Traditional
multi-hop routing schemes first determine a routing path and
forward data via the determined path. On the other hand, in
opportunistic routing (OR) [1], each node broadcasts a packet
and chooses the next forwarder node among the nodes which
have actually received the packet. In this way, OR exploits the
receive diversity and thus, achieves better performance than
traditional routing. An OR scheme for CR multi-hop relay
networks has been studied in [2].

Recently, reinforcement learning (RL) based routing
schemes have been proposed for CR relay networks. Tradi-
tional routing schemes that uses model-based optimization
require a lot of prior knowledge, e.g., channel gains among
nodes in CR relay networks and PU occupancy probability
to obtain the optimal solution. However, in RL an agent tries
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to find its best policy that maximizes its long-term reward
without prior knowledge about the environment. Therefore,
there have been many works that study RL-based algorithms
for CR and/or relay networks [3]–[6].

In this paper, we propose an deep RL (DRL)-based OR
scheme for CR relay networks to maximize the packet re-
ception probability of the secondary relay network while
meeting the QoS of the primary network. We model the routing
problem as a constrained Markov decision process (CMDP)
and use a Lagrangian relaxation to obtain an unconstrained
MDP. We solve the unconstrained MDP by using deep Q-
learning (DQL) and optimize the dual variable via primal-dual
algorithm. The proposed DRL-based OR scheme can be im-
plemented in a decentralized manner because it requires each
relay node only to know the Q-functions of its adjacent relay
nodes for updating its Q-function. Therefore, it can reduce
the signaling overhead among the relay nodes compared with
centralized schemes.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a cognitive relay
network where a secondary relay network and a primary
network coexist and they share the common spectrum. The
primary network consists of a primary-transmitter (PU-TX)
and a primary-receiver (PU-RX). The secondary network
consists of a source (Src), a destination (Dst), and SU relay
nodes, denoted as Ri, i = 1, · · · , I , where I is the number
of SU relay nodes. The secondary nodes perform spectrum
sensing and determine whether to transmit a packet or not
while guaranteeing the QoS of the primary network. The CR
relay network operates in a synchronized time-slotted frame
structure with a slot duration T . We model the activity of PU-
TX in each slot as an independent and identically distributed
alternating busy (PU-TX is active) and idle (PU-TX is inactive)
process. In each slot, SU nodes perform spectrum sensing and
one-hop packet forwarding.

The packet forwarding of secondary relay network is based
on OR. In OR, each relay node selects its neighboring nodes,
puts them in its forwarder list, and then prioritizes them.
The current forwarding node broadcasts its packet to the
neighboring nodes and the packet is opportunistically received
by some of the nodes in the forwarder list. Then, the next
forwarding node is chosen as the one that has the highest
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Fig. 1. System model

priority among them. This process is repeated until the packet
is forwarded to Dst or dropped after a time limit.

III. FORMULATING THE ROUTING PROBLEM AS CMDP
In this section, we model the routing problem in the CR

relay network as a CMDP. We define the CMDP as a tuple
(S,A,P,R, cpen). P is unknown state transition function and
other elements of the CMDP tuple is described as follows.

1) State: The state set can be written as S = O × M ×
N × V , where O = {o|o ∈ R}, M = {0, · · · ,M − 1},
N = {S,D, 1, 2, · · · , I}, and V = {0, 1} are the sets of
observations (sensing results) on the PU states, the slot indices,
the secondary nodes, and values of a flag indicating success
or failure of packet delivery to Dst in the previous slot,
respectively. A state (o,m, n, v) indicates that observation is
o, the slot index is m, the forwarder node is SU node n, and
the flag value is v. Here, v = 1 if a successful packet delivery
to Dst has occurred in the previous slot and v = 0 otherwise.

2) Action Space: Under state s = (o,m, n, v), the action
set A = {a|a ∈ {0, 1}}, where a = 0 means that forwarder
node n in the slot index m does not transmit data, while a = 1
means that it transmits data.

3) Reward: The immediate reward received after transition
from state s = (o,m, n, v) to state s′ = (o′,m′, n′, v′) due to
an action a is given by

Ra
ss′ =

{
1, v′ = 1,

0, v′ = 0,
(1)

where v′ = 1 indicates that a successful packet delivery to Dst
has occurred in the transition from s to s′.

4) Cost: The immediate cost received after transition from
state s = (o,m, n, v) to state s′ = (o′,m′, n′, v′) due to an
action a is given by

cpen(s, a) =

{
1, with prob. pPU

err (s, a)

0, with prob. 1− pPU
err (s, a)

,

where pPU
err (s, a) is the packet error probability of the primary

network under state s and action a. High transmission power
of the secondary network can cause interference to the primary
network, which can increase pPU

err (s, a).
In this paper, we find the optimal routing policy that

maximizes the packet reception probability, while ensuring

the QoS constraint of the primary network. To formulate
this problem, we first define the value function and the cost
function of as:

Vπ(s0) ≜ lim
T→∞

E

[
T∑

t=0

γtRπ(St)
StSt+1

∣∣∣∣∣S0 = s0

]

and

Cπ(s0) ≜ lim
T→∞

E

[
T∑

t=0

γtcpen(St, π(St))

∣∣∣∣∣S0 = s0

]
,

respectively, where π : S → A is the policy, St is the state of
the MDP at the tth time step, and γ is discount factor. Then,
we consider the following problem:

max
π

Vπ(s0)

Cπ(s0) ≤ pth (2)

where pth is the threshold of the error probability.

IV. THE PROPOSED DRL-BASED OR SCHEME

To solve the problem in (2), we use a primal-dual algorithm.
From [7], we can obtain the optimal policy of the problem in
(2) by solve the following dual problem:

inf
λ≥0

sup
π

Lλ
π(s0),

where Lλ
π(s0) = Vπ(s0)− λ[Cπ(s0)− pth] and λ is Lagrange

multiplier. Specifically, we can get the optimal policy using
one-dimensional search with respect to λ ≥ 0 and the
solution of supπ Lλ

π(s0), which can be obtained by solving
the unconstrained MDP (S,A,R−λcpen). Denote π(λ) to be
the solution of the unconstrained MDP with λ, then we can
use a gradient-decent-like algorithm to obtain the optimal λ∗

as follows:

λp+1 = λp + θp
[
Cπ(λp)(s0)− pth

]
, (3)

where θp > 0 is the updating step size.
To solve the unconstrained MDP with λ, we use DQL

algorithm in [8]. A centralized implementation of the DRL-
based OR scheme requires the central unit to collect global
information, i.e., rewards from all the SU nodes, which results
in a huge signalling overhead. Therefore, we implement the
DRL-based OR scheme in a decentralized manner by utilizing
the property of updating Q-function: Each SU node n needs to
keep only its Q-function and updates its Q-function by using
Q-functions of its adjacent SU nodes.

V. SIMULATIONS

In this section, we present the simulation results on the
performance of the proposed DRL-based OR scheme. The
bandwidth of CR relay network is 10 MHz and the transmis-
sion power of the PU-TX is 23 dBm. The active probability
of PU-TX is 0.3. The SU relays are uniformly deployed in a
grid between Src and Dst. To implement DQL, we use a deep
Q-network that has two hidden layers. The activation function
is chosen as rectified linear unit (Relu) and the learning rate
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Fig. 2. (a) Packet reception probability, (b) Packet error probability of PU

is set to α = 0.0005. Fig. 2-(a) shows the packet reception
probabilities of the proposed DRL-based OR scheme and a
fixed route scheme versus learning iterations, where the fixed-
route scheme first determines the route from Src to Dst before
forwarding packets and then controls the packet transmissions
of SU nodes by using DRL. From the above results, the packet
reception probability of the proposed scheme is higher than
that of the fixed-route scheme. Fig. 2-(b) shows the packet
error probabilities of PU for the proposed DRL-based OR
scheme and fixed route scheme. We set the threshold of the
error probability for PU pth = 0.1. Both the proposed DRL-
based OR scheme and the fixed route scheme satisfy the QoS
constraint of PU.

VI. CONCLUSIONS

In this paper, we have proposed the DRL-based OR scheme
for CR relay networks to maximize the packet reception prob-
ability while guaranteeing the QoS of the primary network.
We have modeled the routing problem of the secondary relay
network under the QoS constraint of the primary network
as a CMDP. We have obtained optimal decisions of the
CMDP by employing a Lagrangian relaxation and DQL. The
proposed DRL-based OR scheme can significantly improve
the reliability and spectral efficiency of CR relay networks by
combining receive diversity of OR and spectrum sharing of
CR.
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