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Abstract—In this paper, we consider a cell-free massive
multiple-intput multiple-output (MIMO)-enabled mobile edge
computing (MEC) network where AP switch on/off method is
adopted for energy saving. We formulate a system-wise energy
minimization problem, which jointly optimizes on/off mode of
APs, uplink transmit power, and offloading ratio. The problem
is non-convex and thus hard to solve using optimization methods.
To solve the problem, we first reformulate it as a Markov decision
process (MDP) and then propose a deep reinforcement learning
(DRL)-based scheme. Simulation results show that our proposed
scheme can reduce the energy consumption significantly.

Index Terms—Mobile edge computing, cell-free massive
MIMO, AP switch on/off, deep reinforcement learning

I. INTRODUCTION

Recently, mobile users’ demands for computation-intensive
and latency-sensitive applications are increasing explosively.
However, since user devices have capacity-limited battery and
low computing power, it is challenging for them to compute
the tasks efficiently. Mobile edge computing (MEC) [1], which
enables users to offload their tasks to nearby edge servers with
powerful computing capability, has emerged as a promising
technology to address this problem. Enhancing uplink perfor-
mance is essential for MEC since it directly affects offloading
delay and the resulting total delay of computation task.

Cell-free massive multiple-input multiple-output (MIMO)
[2], [3], where a large number of access points (APs) with
a few antennas cooperatively serve a much smaller number
of users simultaneously with the help of a central processing
unit (CPU), is a promising technology to improve the coverage
and throughput. Through the cooperation, the APs can act as
a co-located massive MIMO BS and exploit the beamforming
gain to increase the data rate. Also, owing to the densification
of APs, the concept of “cell” disappears and all users can be
provided with uniformly good communication service.

Based on these advantages, combining cell-free massive
MIMO with MEC is expected to increase the uplink data rate
for offloading and thus enhance the overall performance of
MEC networks. Motivated by this, the study in [4] considered
a cell-free massive MIMO MEC network and proposed a
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DRL-based resource allocation scheme to minimize the total
energy consumption of users. The dense deployment of APs
in cell-free massive MIMO raises concerns about huge energy
consumption. To cope with this problem, AP switch on/off
method, which turns off some APs to reduce the energy con-
sumption, has been considered as an energy-efficient strategies
for cell-free massive MIMO networks [5], [6].

In this paper, we consider a cell-free massive MIMO MEC
network adopting AP switch on/off and propose a DRL-
based joint AP switch on/off and resource allocation scheme.
Specifically, we formulate an optimization problem of jointly
controlling on/off mode of APs, uplink transmit power and
offloading ratio to minimize the system-wise total energy
consumption under the users’ delay constraints. Then, to tackle
the hardness of the problem and uncertainty of time-varying
environment, we propose a deep deterministic policy gradient
(DDPG)-based scheme to solve the problem. Different from
the existing works, our work considers combining cell-free
massive MIMO network adopting AP switch on/off with MEC
network, and proposes a DRL-based AP switch on/off scheme.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cell-free massive MIMO-enabled MEC net-
work with M APs, each equipped with N antennas, and
K single antenna users, such that M � K. All APs are
connected to a CPU via fronthaul links. The CPU has an MEC
server with computing capacity F [cycles/s]. Each AP can be
either on (in active mode) or off (in inactive mode) for energy
saving. Let αm ∈ {0, 1} denote the mode of AP m, where
αm = 1 indicates AP m is on, otherwise αm = 0.

Assume that each user k has a computation task whose size
is Bk [bits] and required number of cycle is Ck. Each user
k locally computes a part of its task with computing capacity
f loc
k and offloads the remaining part to the MEC server with

uplink transmit power pk ∈ [0, pmax
k ]. Let θk ∈ [0, 1] denote

the offloading ratio of user k defined as the ratio of the amount
of offloaded task to the amount of total task of user k.

A. Uplink rate

Channel between AP m and user k is given by gmk =√
βmkhmk ∈ CN×1, where βmk is large-scale channel coeffi-

cient and hmk is small-scale channel vector assumed to be i.i.d
Rayleigh fading. According to the channel estimation in [3],

235979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023



gmk is estimated as ĝmk by AP m. After channel estimation
phase, user k deciding to offload transmits the data sk to the
all APs. Then, the received signal at active AP m is given by
ym =

∑K
l=1 gml

√
plsl + nm, where nm is noise at AP m.

Maximum ratio combining is used to detect sk. Since only
active APs (with αm = 1) calculate and send ĝH

mkym’s to
the CPU, the CPU observes rk =

∑M
m=1 αmĝH

mkym, which
can be decomposed into desired signal (DSk), beamforming
uncertainty (BUk), inter-user interference (IUIk,l), and noise:

DSk = E

{
M∑

m=1

amĝH
mkgmk

√
pk

}

BUk =

M∑
m=1

amĝH
mkgmk

√
pk − E

{
M∑

m=1

amĝH
mkgmk

√
pk

}

IUIk,l =
M∑

m=1

amĝH
mlgml

√
pl.

From above, the uplink SINR of user k is

γk =
|DSk|2

E {|BUk|2}+
∑

l �=kE {|IUIk,l|2}+
∑M

m=1αmE {‖ĝH
mk‖2}

.

Then, uplink rate of user k is given by Rk = W log2(1+γk),
where W is bandwidth. Details of this subsection are in [3].

B. Computation and energy consumption model

Given offloading ratio θk ∈ [0, 1], (1 − θk) of user k’s
task is locally computed and θk of user k’s task is offloaded.
Then, local computing delay and energy of user k are given by
Dloc

k = (1−θk)Ck

f loc
k

and Eloc
k = κ(1 − θk)Ck{f loc

k }2 + pl,ck Dloc
k ,

respectively, where κ is effective capacitance coefficient and
pl,ck is the power consumed by leakage currents.

Let Fk denote the MEC server’s computing capacity al-
located to user k’s task, which is proportional to offloaded
bits. Assuming the computing result size is much smaller
than the input size, we ignore the result download delay.
Then, offloading delay and energy of user k are given by
Doff

k = θkBk

Rk
+ θkCk

Fk
and Eoff

k = (pk + pt,ck )Doff
k , respectively,

where pt,ck is the circuit power consumed by user k.
Assuming parallel operation of local computing and of-

floading, the total delay of user k is given by Dtot
k =

max
{
Dloc

k , Doff
k

}
and energy of user k are given by

E tot
k = Eloc

k + Eoff
k . (1)

As in [5], power consumption model of AP m is given by

Pm =



(ξFH

m + ξAP
m )

K∑
k=1

Rk + P FH,fix
m,ON + PAP,fix

m,ON αm = 1

P FH,fix
m,OFF + PAP,fix

m,OFF αm = 0

,

(2)

where ξFH
m and ξAP

m are the traffic-dependent power coefficients
for fronthaul and AP m, respectively, P FH,fix

m,l is the traffic-
independent power consumed by fronthaul when in mode
l ∈ {ON,OFF}, and PAP,fix

m,l is the traffic-independent power
consumed by AP m including RF chain power consumption

when in mode l. Given AP operation time TAP � max
k

Doff
k ,

total energy consumption of all APs is expressed as

EAP = TAP ·
M∑

m=1

Pm. (3)

Finally, system-wise total energy consumption is given by

E({αm}Mm=1, {pk, θk}Kk=1) =

K∑
k=1

Etot
k + EAP. (4)

The problem of minimizing system-wise total energy con-
sumption is formulated as

minimize
{αm}M

m=1,{pk,θk}K
k=1

E({αm}Mm=1, {pk, θk}Kk=1) (5)

subject to Dtot
k ≤ Dmax

k , ∀k,

where Dmax
k is the delay limit for user k’s computation task.

The problem (5) is a form of mixed-integer programming,
which is non-convex, and therefore is hard to solve using
optimization methods. To tackle this problem, we propose a
DRL-based solution in the next section.

III. DRL-BASED JOINT AP SWITCH ON/OFF AND
RESOURCE ALLOCATION SCHEME

In this section, we reformulate (5) as a Markov-decision
process (MDP) problem and propose a DDPG-based solution.

A. MDP formulation

1) State: The state at time slot t is defined as s(t) �
{B(t),C(t),R(t− 1)}, where B(t) = [B1(t), · · · , BK(t)] is
task size at time slot t, C(t) = [C1(t), · · · , CK(t)] is required
cycles at time slot t, and R(t−1) = [R1(t−1), · · · , RK(t−1)]
is uplink rate of users at time slot (t− 1).

2) Action: The action at time slot t is defined as
a(t) � {α(t),p(t),θ(t)} ∈ RM+2K , where α(t) =
[α1(t), · · · , αM (t)] is on/off mode, p(t) = [p1(t), · · · , pK(t)]
is uplink transmit power, and θ(t) = [θ1(t), · · · , θK(t)] is
offloading ratio at time slot t.

3) Reward: To minimize total energy consumption E(t),
we consider a decreasing function of E(t) as a reward. Also,
for the delay constraints, we introduce the penalty Cpen which
is proportional to the number of users not satisfying the delay
constraint. As a result, we define the reward at time slot t as

r(t) �

∑K
k=1 Bk(t) [kbits]

E(t)
− Cpen. (6)

B. DDPG-based solution

In DDPG [7], the critic network Q(s, a|�Q) approximates
the state-value function of the MDP and the actor network
µ(s|�µ) approximates the best action given state s. In our
scheme, we adopt the sigmoid function whose value is in
[0, 1] as the activation function of the output layer of the actor
network. Let o(t) = [o1(t), · · · , oM+2K(t)] ∈ RM+2K denote
the output of actor network. To generate the discrete on/off ac-
tions αm(t)’s of the APs, we discretize om(t), m = 1, · · · ,M ,
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Fig. 1. Average reward versus episode index (M = 120 APs and K=12
users)

into αm(t)’s using a threshold value of 0.5. Uplink transmit
power and offloading ratio are given by pk(t) = pmax

k oM+k(t)
and θk(t) = oM+K+k(t), k = 1, · · · ,K, respectively.

IV. SIMULATION RESULTS

In our simulation, we consider a square area of 1km ×
1km. We assume that M = 120 APs with N = 4 antennas
are deployed in 12× 10 grid pattern in the area and K users
are uniformly distributed at random. We employ the model
in [2] for βmk. MEC server’s computing capacity is set to
F = 25 GHz. Maximum uplink transmit power and computing
capacity of the users are set to pmax

k = 0.5 W and f loc
k =

0.8 GHz, ∀k, respectively. Task size is sampled by a uniform
distribution Bk ∼ U [4, 8] Mbits, and the required cycle is
Ck = 103Bk. We use the same parameters for AP power
consumption in (2) as [5]. In the DDPG algorithm, both actor
and critic networks are fully-connected DNNs with 4 hidden
layers of 128 neurons and use ReLU for activation function.

For comparison, we consider following benchmark schemes:
• All APs ON + Learning resource allocation (RA): All

APs are always on, i.e., αm = 1, ∀m, and resource
allocation [p(t),θ(t)] is learned by using DDPG.

• Random switch (RS)-pon+Random RA: APs are ran-
domly switched on with probability pon and [p(t),θ(t)]
is randomly chosen.

Fig. 1 shows the average reward of episodes in training.
Each episode consists of 250 time steps. We can see that
average reward is low and fluctuating in the early stages. But,
as the training progresses, it converges to a steady value.

Fig. 2 shows the system-wise total energy consumption
performance of the various schemes versus the number of
users K. We can observe that the proposed scheme obviously
outperforms benchmark schemes. This directly shows that by
smartly choosing which APs to turn on and allocating re-
sources, the proposed scheme can reduce the energy consump-
tion significantly. As we can see from the performance gap
between the proposed scheme and “All APs on + Learning RA”
scheme, even though the resource allocation is good, turning
all APs on is not an energy-efficient choice. Besides, as we
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Fig. 2. System-wise total energy consumption versus the number of users
(M = 120 APs)

can see from the performance gap between “RS-1.0 + Random
RA” scheme and “All APs on + Learning RA” scheme, the
resource allocation is also very crucial for reducing energy
consumption. In addition, it can be seen that total energy
consumption increases as the number of users increases in
all schemes. One simple and obvious reason for this is that
the number of energy consumer has increased. Another reason
is an increase in offloading delay due to an increase in inter-
user interference and a decrease in the allocated computing
capacity per user from the MEC server.

V. CONCLUSION

In this paper, we have proposed a joint AP switch on/off
and resource allocation scheme for energy-efficient cell-free
massive MIMO MEC networks. We have formulated a system-
wise energy minimization problem, which is challenging to
solve using optimization methods. Then, we have proposed a
DDPG-based scheme to solve the problem. By the simulation
results, we have demonstrated that the proposed scheme can
significantly reduce the system-wise total energy consumption
of cell-free massive MIMO MEC networks.
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