
Offloading Utility Optimization in Parked Vehicular
Edge Computing

Xuan-Qui Pham, and Dong-Seong Kim
ICT Convergence Research Center, Kumoh National Institute of Technology, Korea

Email: {pxuanqui, dskim}@kumoh.ac.kr

Abstract—Parked vehicular edge computing (PVEC) has re-
cently been introduced as a new paradigm that makes use
of parked vehicles to support edge servers in computation
offloading. However, most existing research does not consider
the local computing capacity of requesting devices and/or the
resource cost for offloading tasks. In this paper, we propose a
partial computation offloading scheme that allows mobile devices
(MDs) to utilize both local and remote resources for parallel task
execution in PVEC. The goal is to maximize the total offloading
utility of MDs, which is defined as the difference between the
benefit of latency reduction and the cost of using computing and
networking resources. Simulation results show that the proposed
scheme can improve the total offloading utility compared to
conventional schemes.

Index Terms—parked vehicular edge computing, partial of-
floading, resource allocation.

I. INTRODUCTION

With the ever-increasing number of smart mobile devices
(MDs), various delay-sensitive and compute-intensive applica-
tions are emerging, such as face recognition, virtual/augmented
reality, natural language processing, etc. However, MDs are in
general resource-constrained and cannot meet the computa-
tional demand of these services. Multi-access edge computing
(MEC) [1] has been introduced to address this challenge by
enabling MDs to offload their tasks to edge servers that provide
cloud computing capabilities at WiFi access points and base
stations. Despite being widely studied, computation offloading
in conventional MEC still presents critical challenges [2],
[3]. Considering the high capital expenditure and operating
expense, it is infeasible to deploy dense edge servers to face
the rapid proliferation of MDs.

Meanwhile, the opportunistic resources offered by a large
pool of vehicles in urban areas can be brought together and
leveraged to relieve the resource congestion of edge servers
during peak times. For example, a collaborative computation
offloading system consisting of mobile vehicles, an edge
server and the remote cloud is proposed in [4]. However,
the high mobility of mobile vehicles may cause intermittent
connectivity during the offloading process.

By contrast, parked vehicles (PVs) are relatively static for
a long period, and thus offer more reliable task offloading
performance. Recent research introduced the concept of parked
vehicular edge computing (PVEC), which employs PVs as
static edge computing nodes to assist edge servers in offloading
tasks from MDs. For example, the authors in [5], [6] utilized
the Stackelberg game framework to investigate the problem of

Parked vehicles

Edge server

Task

MEC offloading
D2V offloading
Local execution
Remote execution

Fig. 1: System model.
workload allocation between an edge server and multiple PVs
to minimize the overall offloading cost. In [7], a computation
offloading scheme for PVEC was proposed to minimize the
latency of offloaded MDs’ tasks. However, it is worth noting
that the above-mentioned works concentrated on full offload-
ing mechanisms in which the computation task is completely
offloaded for remote execution without considering the local
computing resources of requesting devices. Partial offloading
mechanisms, on the other hand, determine the appropriate
offloading ratio and process tasks in parallel using both local
and remote resources. Few studies on partial offloading were
proposed. However, they were limited by not considering
computing resources of edge servers [8] or the costs associated
with resource usage [9].

To fill this gap, partial computation offloading in PVEC is
investigated in this work. We first formulate the total offloading
utility maximization problem with joint consideration of task
assignment, offloading ratio, and resource allocation. The
offloading utility of each MD is defined in terms of the task
latency reduction and the associated costs for both computing
and communication resources. Then we propose a partial
offloading scheme, in which a closed-form expression of the
optimal offloading ratio and resource allocation is derived,
and a heuristic algorithm is used to solve the task assign-
ment problem. Finally, through simulation results, we verify
the superior performance of our proposal over conventional
schemes in terms of total offloading utility.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 shows the PVEC paradigm that includes a base station
(BS) furnished with an edge server, a set N of MDs, and a
set M of PVs. The BS is employed as a trustful manager to
analyze the parking behaviors of PVs to periodically choose
reliable PVs as task processors and add them to set M. The
PV selection can be done as in [5]. Considering a discrete-time
model, MDs and PVs are assumed to be unchanged within a

350979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

time slot while they may change across time slots. Each MD
requests a computation task denoted by {Di, Ci}, where Di

represents the size of input data, Ci represents the computation
density. For partial offloading, each MD will locally process
(1− λi)Di bits and offload the rest to the edge server 0 or a
PV through device-to-vehicle (D2V) communication, wherein
λi ∈ [0, 1] is the variable of the offloading ratio.

The overall latency of MD i includes the local computation
latency tlij at the MD and the offloading latency toffij from
MD i to computing node j ∈ M∪ {0} as follows:

tlij =
(1− λi)DiCi

f l
i

. (1)

toffij =
λiDi

Rij
+

λiDiCi

fij
, (2)

where f l
i represents the local computing capacity of MD i, Rij

is the transmission rate between MD i and computing node j
as in [10], and fij denotes the allocated computing resources
of computing node j. In this work, we consider that at a time
slot, the edge server can process multiple computation tasks
while a PV can serve at most one MD due to the idle resource
constraint. As such, in the case of D2V offloading, fij = Fj ,
where Fj denotes the computation capacity of the PV j.

The overall latency is then calculated as tij =

max{tlij , t
off
ij }.

Let a = {aij |i ∈ N , j ∈ M∪ {0}} be the task assignment
vector. From the perspective of MDs, the utility is determined
by the difference between the gain of latency reduction and
the resource cost:

Wi =
∑

j∈M∪{0}

aijWij =
∑

j∈M∪{0}

aij [Gt(t
l
i − tij)−

P transλiDi − P exe
j fij],

(3)

where tli is the local computation latency of the whole task, Gt

is the unit gain of latency reduction, and P trans and P exe
j pj

are the unit price of communication and computing resources.
The problem formulation is then expressed as follows:

max
λ,a,f

∑
i∈N

Wi (4)

s.t.
∑

j∈M∪{0}

aij ≤ 1, ∀i ∈ N , (4a)

∑
i∈N

aij ≤ 1, ∀j ∈ M, (4b)

∑
i∈N

ai0fi0 ≤ F0, (4c)

tlij = toffij , ∀i ∈ N , j ∈ M∪ {0}, (4d)
0 ≤ λi ≤ 1, aij ∈ {0, 1} , fi0 ≥ 0, ∀i ∈ N , j ∈ M∪ {0}.

(4e)

where (4a) and (4b) denotes the association constraints be-
tween tasks and computing nodes. (4c) ensures the total
resource allocation of the edge server does not exceed its
computing capacity. (4d) indicates the conditions to reach the
minimum latency in the partial computation offloading [10].
And (4e) are the variables’ boundaries.

III. PROPOSED SOLUTION

The original problem can be decomposed into two subprob-
lems as follows:

A. Offloading Ratio and Resource Allocation Policy

1) MEC Offloading: Given tlij = toffij , the allocated com-
puting resources are derived from (1) and (2) as follows:

fi0 =
λiDiCi

(1− λi)DiCi/f l
i − λiDi/Ri0

. (5)

Given ti0 = (1 − λi)t
l
i, substitute (5) into Wij in (3), the

utility of MD i is:

Wi0(λi) = (
GtDiCi

f l
i

−P transDi)λi−
P exe
0 DiCiRi0f

l
iλi

DiCiRi0 − (DiCiRi0 +Dif l
i)λi

(6)
Taking the derivatives of Wi0 with respect to λi, we have
If K = (GtDiCi

f l
i

− P transDi) ≤ 0, then ∂Wi0

∂λi
< 0. Wi0

monotonically decreases and its minimum is at λ∗
i = 0.

If K > 0, let ∂Wi0

∂λi
= 0, we find the local maximum point

A =
DiCiRi0−DiCiRi0f

l
i

√
Pexe
0

GtDiCi−PtransDif
l
i

DiCiRi0+Dif l
i

.
Hence, the optimal offloading ratio of MD i in the MEC

offloading mode is obtained as follows:

λ∗
i =

{
0, if gtDiCi

fl
i

− P transDi ≤ 0 or A ≤ 0

A, otherwise,
(7)

2) D2V Offloading: For the D2V offloading mode, the
optimal offloading ratio to minimize the latency is given as

λ∗
i =

DiCiRijFj

DiCiRijf l
i + (DiCiRij +Dif l

i)Fj
. (8)

B. Task Assignment
Given the obtained offloading ratio and resource allocation,

we can rewrite the problem (4) as follows:
max
a

∑
i∈N

Wi (9)

s.t. (4a), (4b), (4c), aij ∈ {0, 1} .

Then we separate the problem (9) into the MEC mode
optimization and D2V mode optimization. In the proposed
solution, the computation tasks are first greedily assigned
to the edge server until reaching its maximum computing
capacity, and then the rest of the tasks are processed by
the D2V offloading mode. The MEC mode optimization is
a typical 0-1 knapsack problem, in which f∗

i0 and Wi0 denote
the weight and value of each item along with a maximum
weight capacity F0. This problem can be solved by the greedy
approximation algorithm, in which the elements (tasks) are
first sorted in descending order of value per unit of weight
(i.e., Wi0/fi0), then the sorted elements are inserted into the
knapsack until its maximum capacity is reached. Meanwhile,
the D2V mode optimization is an assignment problem between
N tasks and M PVs. Here, we utilize the matchpairs function
in the Matlab toolbox to solve this problem.

IV. EVALUATION RESULTS AND DISCUSSIONS

We examine a coverage area of 200m × 200m, where a
MEC-enabled base station is centrally located, and 20 MDs
along with 10 PVs are distributed within the coverage, unless
otherwise stated. The simulation parameters are summarized
in Table I [10]. We compare our proposal with two baselines:

351

6 10 14 18 22 26

Number of MDs

0

1

2

3

4

5

6

T
o

ta
l
o

ff
lo

a
d

in
g

 u
ti
lit

y

Full offloading

ESO

Proposed

(a)

100 150 200 250 300 350

Input data size (KB)

0

5

10

15

20

T
o

ta
l
o

ff
lo

a
d

in
g

 u
ti
lit

y

Full offloading

ESO

Proposed

(b)

0.5 0.6 0.7 0.8 0.9 1

Local computing capacity of MDs (GHz)

0

1

2

3

4

5

6

7

T
o

ta
l
o

ff
lo

a
d

in
g

 u
ti
lit

y

Full offloading

ESO

Proposed

(c)

10 15 20 25 30 35

Computing capacity of the MEC server (GHz)

1.5

2

2.5

3

3.5

4

4.5

T
o
ta

l
o
ff
lo

a
d
in

g
 u

ti
lit

y

Full offloading

ESO

Proposed

(d)
Fig. 2: Total offloading utility versus: (a) Number of MDs, (b) Input data size, (c) Local computing capacity of MDs, (d)
Computing capacity of the edge server.

TABLE I: Simulation parameters.

Parameter Value
A task: Di and Ci [50,150] KB; [1,2] mc/KB
Computing capacity of the edge server 15 GHz
Computing capacity of MDs and PVs [0.5,1] GHz; [1,1.5] GHz
MDs’ transmission power 30 dBm
Channel bandwidth, path loss exponent, and noise 10 MHz; -3.4; -114dBm
Unit gain of latency reduction 2.5
Unit price of computing resources 0.1
Unit price of communication resources 0.15

Full offloading (FO) scheme where each MD’s task is fully
processed by the MD or fully offloaded to the edge server
or a PV; and Edge server only (ESO) scheme where each
computation task is partially offloaded by only the MEC
offloading mode.

Fig. 2a shows that the total offloading utility increases as
the number of MDs N increases. For a small N , our proposal
has the same total utility as the ESO scheme since the tasks
can be efficiently offloaded using only the edge server. As N
increases, the proposed scheme can achieve better performance
than the ESO scheme by optimizing both the MEC and D2V
offloading modes. Moreover, the total offloading utility can be
greatly improved in the partial offloading schemes, compared
to that of the FO scheme. This phenomenon occurs because the
partial offloading schemes can increase the number of tasks to
be offloaded by determining the appropriate offloading ratio
to tradeoff between the benefit of latency reduction and the
costs associated with resource usage.

Fig. 2b illustrates the total offloading utility under different
input data sizes. Compared to the ESO scheme, the utilization
of D2V offloading mode can significantly enhance the total
offloading utility as the input data size increases. Besides, of-
floading the whole task with increased data size can negatively
impact the offloading utility due to the increase in transmission
latency and communication resource cost. As a result, the FO
scheme shows worse performance than our proposed scheme.

As the local computing capacity of MDs increases, a larger
number of tasks can be executed locally, leading to a reduction
in the total offloading utility as shown in Fig. 2c. When the
local computing capacity is large enough, the total utility can
even decrease to 0, as in the FO scheme. Fig. 2d shows
that when the computing capacity of the edge server F0

increases, the performance of the FO scheme first increases
but then decreases. By contrast, the performance of the partial
offloading schemes can continue to increase up to a certain

value as F0 increases. Moreover, our proposal can obtain better
performance compared to the baselines.

V. CONCLUSION

This paper introduced a utility optimization approach to the
PVEC paradigm. We proposed an efficient partial computa-
tion offloading scheme optimizing both the MEC and D2V
offloading modes. The experimental results demonstrate the
superiority of our approach over traditional baseline methods.
For the future work, the research on the security aspect of the
PVEC paradigm will be taken into account.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of Sci-
ence and ICT), Korea, under the Innovative Human Resource
Development for Local Intellectualization support program
(IITP-2023-2020-0-01612) supervised by the IITP(Institute
for Information & communications Technology Planning &
Evaluation). It was also supported by Priority Research Cen-
ters Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science
and Technology (2018R1A6A1A03024003).

REFERENCES

[1] P. Cruz et al., “On the edge of the deployment: A survey on multi-access
edge computing,” ACM Comput. Surv., vol. 55, no. 5, dec 2022.

[2] C. Jiang et al., “Toward computation offloading in edge computing: A
survey,” IEEE Access, vol. 7, pp. 131 543–131 558, 2019.

[3] X.-Q. Pham et al., “Joint service caching and task offloading in multi-
access edge computing: A qoe-based utility optimization approach,”
IEEE Commun. Lett., vol. 25, no. 3, pp. 965–969, 2021.

[4] ——, “Joint node selection and resource allocation for task offloading
in scalable vehicle-assisted multi-access edge computing,” Symmetry,
vol. 11, no. 1, 2019.

[5] X. Huang et al., “Parked vehicle edge computing: Exploiting opportunis-
tic resources for distributed mobile applications,” IEEE Access, vol. 6,
pp. 66 649–66 663, 2018.

[6] Q. Peng et al., “A task assignment scheme for parked-vehicle assisted
edge computing in iov,” in 2021 IEEE 93rd Vehicular Technology
Conference (VTC2021-Spring), 2021, pp. 1–5.

[7] A. Zhou, X. Ma, S. Gao, and S. Wang, “Providing reliable service for
parked-vehicle-assisted mobile edge computing,” ACM Trans. Internet
Technol., vol. 22, no. 4, nov 2022.

[8] X. Huang et al., “Task-container matching game for computation of-
floading in vehicular edge computing and networks,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 10, pp. 6242–6255, 2021.

[9] X. Hu et al., “Joint load balancing and offloading optimization in
multiple parked vehicle-assisted edge computing,” Wirel. Commun. Mob.
Comput., vol. 2021, pp. 1–13, 11 2021.

[10] X.-Q. Pham et al., “Partial computation offloading in parked vehicle-
assisted multi-access edge computing: A game-theoretic approach,”
IEEE Trans. Veh. Technol., vol. 71, no. 9, pp. 10 220–10 225, 2022.

352

