
Abstract— The Internet Of Thing (IoT) networks are widely
investigated in 5G system and will be still a key technical system
to drive massive connectivity of 6G systems. As the IoT devices and
networks are getting smarter, the IoT ecosystem allows us to
bridge between human life and digital life and accelerate the
transition towards a hyper-connected world. Optimal and scalable
IoT network design has been investigated in many research groups
but key challenges in this topic still remain. In this paper, we
investigate IoT devices deployment problem to minimize the
transmission and computation cost among network nodes. We
formulate the IoT devices deployment problem as Mixed-Integer
Nonlinear Programming (MILNP) problem. After relaxing the
constraints and transforming the problem to a mixed integer
linear programming (MILP) problem, we propose a new branch
and bound (BB) method with a machine learning function and
solve the MILP problem. In the numerical analysis, we evaluate
both conventional BB method and the proposed BB method with
weighting factors and compare the objective function values, the
number of explored nodes, and computational time. The
performances of the proposed BB method are significantly
improved under the given simulation configuration. We find the
optimal mapping of IoT devices to fusion nodes.

Index Terms— IoT, 6G, Mixed Integer Linear Programming,
Branch and Bound method, Machine learning, etc.

I. INTRODUCTION

HE Internet Of Thing (IoT) network can be defined as the
network that can connect billions of things. It has great
potential and enables us to create various new services and

offer new solutions in 5G and 6G era. IoT networks are widely
investigated in 5G system and will be still a key technical
system to drive massive connectivity of 6G systems. The
concept of IoT has been extended to internet of everything (IoE)
[1]. We have intelligent IoT devices and networks. It enables us
to integrate multiple intelligent sensing devices. They will be
able to identify, monitor, and decide intelligently. The sensing
devices of IoE will be able to obtain various data and these data
can be utilized for multiple key 6G use cases such as ehealth,
smart cities, transportation, energy, smart factories and so on.
As the IoT devices and networks are getting smarter, the IoT
ecosystem allows us to bridge between human life and digital
life and accelerate the transition towards a hyper-connected
world. However, there are still key research challenges to
realize the IoT ecosystem. We can summarize them as optimal
and scalable IoT devices deployment, low energy efficiency,
self-organized IoT networks, security and privacy and so on. In

particular, optimal and scalable IoT network design has been
investigated in many research groups but this challenge still
remains. As increasing the number of IoT devices as well as the
number of services, IoT network designers should take into
account many design parameters such as complexity,
scalability, latency, fault tolerance, privacy and security. They
should be optimized but these parameters have a trade-off
relationship because they are closely related to each other.
Thus, IoT network designers often make a decision subjectively
and empirically. It is not easy to find an optimal IoT devices
deployments. In this paper, we design IoT networks to achieve
optimal transmission and reduce computation among IoT
devices and fusion nodes using the branch and bound (BB)
method and machine learning algorithm.
 The BB methods are widely used to find a solution for convex
or non-convex problems that cannot be solved in polynomial
time. The BB methods are based on enumerative approaches
and suitable for solving mixed integer linear programming
(MILP). Land and Doig proposed the BB method [2] to solve
discrete optimization problems. The basic idea is to divide the
original problem into multiple sub-problems that are easier to
solve and enumerates all candidate solutions. Based on the
implicit exploration of the feasible region, we can obtain the
solution. Four components such as branch variable selection,
node selection, node pruning, and cutting-plane selection are
the main functions of the BB method. Branch variable selection
is a task about which fractional variable will be selected and
how to partition a current node into two children nodes in a
search tree. Node selection is about which nodes will explore.
The node selection rules are typically based on depth-first
search, breath-first search, or best bound search. Node pruning
is to prevent exploration of sub-optimal region. Cutting plane
selection is the rule to add constraints to find cutting planes.
They affect to the performance and complexity of the BB
methods. Depending on how they are designed, we can reduce
the feasible region and the number of the iteration and find
optimal solution efficiently. There are many researches about
how to design the main functions [3]. One of key research
challenges for BB methods is to reduce the computational times
and the complexity. Artificial intelligence (AI) algorithms
enables us to improve BB methods by decomposing the
problem into the sub-problems and learning the policy from the
experience. Table 1 summarizes AI algorithms adaptation to
improve the BB methods.
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Table 1. Literature review
Target

function to
improve

Summary Ref

Branch variable
selection

-Learning approach is adopted for regression
-Computation time reduction

[4]

Branch variable
selection

- Support vector machine is adopted for rank
formulation
-Consider many good candidate and good
performance at medium size problems

[5]

Branch variable
selection

- Graph convolutional neural network is
adopted to reduce feature computation cost.
- Computation time reduction

[6]

Node selection - Reinforcement learning is adopted for improve
the search nodes and the number of iteration.
- Smaller search nodes and iteration number
reduction.

[7]

Node selection -Deep neural network is adopted to estimate low
bound.
-Better solution is obtained than heuristic
method.

[8]

Node pruning -Learning methods is used to achieve better
bounds.
- Accelerating the pruning process.

[9]

Cutting plane
selection

-Reinforcement learning is used. They
formulated the process of sequentially selecting
cutting planes as a Markov decision process.
-Improvement the performance of heuristics.

[10]

 In this paper, we investigate IoT device deployment problem
to minimize the transmission and computation cost among
network nodes. We formulate the IoT device deployment
problem as Mixed-Integer Nonlinear Programming (MILNP)
problem. After relaxing the constraints and transforming the
problem to a mixed integer linear programming (MILP)
problem, we propose a new BB method with a machine learning
function and solve the MILP problem. The main contributions
of this paper can be summarized as follows:
(1) IoT network deployment problem formation as MILP
problem to optimize the transmission among network nodes,
(2) New BB method with a machine learning function to reduce
the computational complexity,
(3) Performance analysis and evaluation of the proposed BB
method.
The remaining part of this paper is organized as follows: In
Section II, system model is described and the problem is
formulated. In Section III, the proposed BB method is
explained. In Section IV, the performances of the proposed
method are evaluated and compared with the conventional BB
method. Section V contains the conclusion and summary.

II.SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define the IoT network system model and
formulate the problem.

A. System Model
We consider 2 dimensional (2D) model of IoT networks. The

IoT network consists of network nodes such as IoT devices (end
nodes), fusion nodes (gateways) and base stations. The base
stations are connected to cloud networks. The type of all IoT
devices are same. Their location is fixed. The IoT devices are
directly connected with fusion nodes over a wireless link. The
multiple hops between IoT devices are not allowed. The fusion
nodes are connected to the base stations via a wireless link as

well. The network nodes are on separate integer grid points
between 1 and N. N is an integer. The number of IoT devices,
fusion nodes and base stations can be expressed as ⌊𝑖𝑖𝑖𝑖2⌋, ⌊𝑓𝑓𝑖𝑖2⌋
and ⌊𝑏𝑏𝑖𝑖2⌋, respectively. i, f and b ∈ ℝ represent the density of
IoT devices, fusion nodes and base stations, respectively. Their
locations are randomly selected in the integer grid points.
Figure 1 illustrates an example of 2D IoT network model.

Fig 1 Example of a 2D IoT network model.

IoT devices require specific application services. Service
providers define the IoT device groups of the specific services
and the IoT device groups are operated for specific applications.
The applications can be computed at the base stations. When a
base station computes specific application to reduce the
network traffics at the core network, we can reduce the latency
and improve the service quality. However, due to the limited
computing resources, some applications can be computed at
cloud-computing servers while not violating specific latency
conditions. In this system model, base stations have enough
computational power. In mobile network systems, IoT networks
are widely referred to as graphs. The graph theory can represent
symmetric or asymmetric relations among nodes and edges. We
express IoT networks as a graph 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺𝐺𝐺 where V and E
denote network nodes (vertices) and network links (edges),
respectively. The node has a 2D position component 𝑣𝑣 ∈ 𝐺𝐺 𝐺
(𝑣𝑣1𝐺 𝑣𝑣2) ∈ ℝ. A hub (a node with high degree) becomes a fusion
node. The service demand for each application 𝑎𝑎𝑎 ∈ ℝ at an IoT
device v is 𝐷𝐷𝑣𝑣𝐺𝑣𝑣. It represents how much it can be served in a
time interval. In the IoT network, applications from a base
station and cloud should be distributed to IoT devices in the
demand. The instances are independent of each other.
Maximum number of instances 𝑖𝑖𝑣𝑣 represents how application
can be horizontally scaled. Namely, it indicates how much we
cope with the new demands by adding nodes to the networks.
Resource demand function 𝑓𝑓𝑣𝑣𝑟𝑟(𝑤𝑤) is defined as the average
amount of resources 𝑟𝑟 required by an instance of application
with a workload w. The workload is defined as the average
arrival rate of the requests for an instance of application. The
workload rate 𝑤𝑤𝑣𝑣 is the average request rate of IoT devices for
the application a. It can be expressed as a Poisson distribution
function. It indicates how application can be vertically scaled.
Vertical scaling means to add more resources to existing
networks. We assume that each IoT device requests for only one
application and the instance of applications handles their

: Base station : Fusion nodes : IoT devices
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requests. We define the capacities of base stations and fusion
nodes as 𝐶𝐶𝑢𝑢,𝑎𝑎 and 𝐶𝐶𝑣𝑣,𝑎𝑎, respectively, where u denotes a base
station node and v denotes a fusion node. The total data rate of
the application a from a fusion node to an IoT device is less
than 𝐶𝐶𝑣𝑣,𝑎𝑎𝑊𝑊𝑎𝑎 where 𝑊𝑊𝑎𝑎 is the bandwidth of the application a to
transmit from a fusion node to an IoT device. We assume that
each IoT device receives an application service from one fusion
node. We need to decide the most efficient transmission from
an IoT device to a fusion node. In the practical IoT network
deployment and management, there are the resource limitations
and latency requirements in terms of applications and network
configuration. The distance between nodes and the transmission
power affect to the transmission latency and reliability. We
simply represent the transmission cost as 𝛼𝛼𝛼𝛼𝑢𝑢,𝑣𝑣𝑝𝑝𝑎𝑎

𝑢𝑢,𝑣𝑣 where 𝛼𝛼 is
constant, 𝛼𝛼𝑢𝑢,𝑣𝑣  is distance between the node u and the node v,
and 𝑝𝑝𝑎𝑎

𝑢𝑢,𝑣𝑣 is the transmission power when transmitting the
application a from the node u to the node v. The computational
cost to process the application a at the base station is
represented as 𝛾𝛾𝑎𝑎𝑢𝑢  where u is a base station node. We consider
the transmission latency and reliability and the computational
cost as the costs of the problem.

B. Problem Formulation
Given the network node locations and the demands, we

optimize the transmission among the network nodes so that IoT
devices receive an application service satisfactorily. Namely,
we find the pair between IoT devices and fusion nodes to
minimize the transmission and computation cost. In order to
formulate the problem, we define two variables as follows:
𝑥𝑥𝑎𝑎
𝑢𝑢,𝑣𝑣 ∈ ℝ represents the volume of the application a transmitting

from a node u to a node v. 𝑦𝑦𝑢𝑢,𝑣𝑣 ∈ {0,1} represents a binary
number indicating whether or not a node u is associated with a
node v. The objective function to minimize can be expressed as
follows:

min� 𝑓𝑓(𝑎𝑎,𝑢𝑢, 𝑣𝑣)
𝑎𝑎,𝑢𝑢,𝑣𝑣

+� 𝑔𝑔(𝑎𝑎,𝑣𝑣, 𝑙𝑙)
𝑎𝑎,𝑣𝑣,𝑙𝑙

(1)

where
𝑓𝑓(𝑎𝑎,𝑢𝑢, 𝑣𝑣) = 𝑥𝑥𝑎𝑎

𝑢𝑢,𝑣𝑣�𝛾𝛾𝑎𝑎𝑢𝑢 + 𝛼𝛼𝛼𝛼𝑢𝑢,𝑣𝑣𝑝𝑝𝑎𝑎
𝑢𝑢,𝑣𝑣� (2)

represents the distribution cost from a base station to and a
fusion node and

𝑔𝑔(𝑎𝑎, 𝑣𝑣, 𝑙𝑙) = 𝑦𝑦𝑣𝑣,𝑙𝑙�𝛼𝛼𝛼𝛼𝑣𝑣,𝑙𝑙𝑝𝑝𝑎𝑎
𝑣𝑣,𝑙𝑙𝐷𝐷𝑙𝑙,𝑎𝑎 � (3)

represents the distribution cost from a fusion node to an IoT
device node in order to satisfy the demands, where 𝑢𝑢 ∈ 𝑈𝑈, 𝑣𝑣 ∈
𝑉𝑉, and 𝑙𝑙 ∈ 𝐿𝐿 denotes a base station node, a fusion node and an
IoT device node, respectively. The constraint C1 of the problem
is the capacity limitation of a base station. It is defined as
follows:

C1:� 𝑥𝑥𝑎𝑎
𝑢𝑢,𝑣𝑣

𝑣𝑣
≤ 𝐶𝐶𝑢𝑢,𝑎𝑎 , ∀𝑎𝑎 ∈ 𝐴𝐴. (4)

The constraint C2 is the demands for the IoT devices for the
application a. It is defined as follows:

C2:� 𝑥𝑥𝑎𝑎
𝑢𝑢,𝑣𝑣

𝑢𝑢
=�𝐷𝐷𝑙𝑙,𝑎𝑎𝑦𝑦𝑣𝑣,𝑙𝑙

𝑙𝑙
, ∀𝑎𝑎 ∈ 𝐴𝐴. (5)

The constraint C3 is about the resource capability at the network
node. The resource demand at the network node v should be less
than the resource capability as follows:

C3:� 𝜌𝜌𝑎𝑎𝑣𝑣𝑓𝑓𝑎𝑎𝑟𝑟(𝜆𝜆𝑎𝑎𝑣𝑣)
𝑎𝑎

≤ 𝐶𝐶𝑣𝑣,𝑟𝑟 , ∀𝑟𝑟 ∈ 𝑅𝑅,𝑣𝑣 ∈ 𝑉𝑉 (6)

where resource capability 𝐶𝐶𝑣𝑣,𝑟𝑟 represents the total resource
capability 𝑟𝑟 ∈ 𝑅𝑅 on the network node v. The binary variable 𝜌𝜌𝑎𝑎𝑣𝑣
indicate a node v computes an instance of the application a. The
requested arrival rate 𝜆𝜆𝑎𝑎𝑣𝑣   for the application a on the node v is
defined as the sum of all requested arrival at the node v.
The constraint C4 represents that one IoT device node is
connected to only one fusion node as follows:

C4:� 𝑦𝑦𝑣𝑣,𝑙𝑙
𝑣𝑣

= 1. (7)

The constraints C5 and C6 are a non-negative amount of
applications and a binary number, respectively. They can be
defined as follows:

C5:𝑥𝑥𝑎𝑎
𝑢𝑢,𝑣𝑣 ≥ 0 (8)

and
C6:𝑦𝑦𝑣𝑣,𝑙𝑙 ∈ {0,1}. (9)

Now, we can formulate the problem as follows:
min� 𝑓𝑓(𝑎𝑎,𝑢𝑢, 𝑣𝑣)

𝑎𝑎,𝑢𝑢,𝑣𝑣
+� 𝑔𝑔(𝑎𝑎,𝑣𝑣, 𝑙𝑙)

𝑎𝑎,𝑣𝑣,𝑙𝑙

Subject to

C1, C2, C3, C4, C5, C6.

(10)

The optimization problem (10) includes continuous and
discrete variables and nonlinear functions in the constraints. We
can regards this problem as a Mixed-Integer Nonlinear
Programming (MINLP) problem. This problem is known as a
NP-hard problem. The solution of the MINLP problem
typically requires searching huge candidates. Due to the high
complexity [11], it is difficult to solve the problem.

C.Relaxation of the MILNP problem
There are many approaches to solve the MINLP problem,

such as heuristic algorithms, branch and bound algorithms and
so on [12]. Our approach is to relax the constraints, transform
(10) to a mixed integer linear programming (MILP) problem
and then solve the problem. In the constraint 3, the resource
demand function 𝑓𝑓𝑎𝑎𝑟𝑟(𝜆𝜆𝑎𝑎𝑣𝑣) is not a linear function. In order to
simplify the resource capability at the network node, we express
the constraint C′3 as the capacity limitation of a fusion node. It
is defined as follows:

C′3:�
𝐷𝐷𝑙𝑙,𝑎𝑎𝑦𝑦𝑣𝑣,𝑙𝑙
𝑊𝑊𝑎𝑎𝑎𝑎,𝑙𝑙

≤ 𝐶𝐶𝑣𝑣,𝑎𝑎 .
(11)

We can re-formulate the problem as follows:

min� 𝑓𝑓(𝑎𝑎,𝑢𝑢, 𝑣𝑣)
𝑎𝑎,𝑢𝑢,𝑣𝑣

+� 𝑔𝑔(𝑎𝑎,𝑣𝑣, 𝑙𝑙)
𝑎𝑎,𝑣𝑣,𝑙𝑙 (12)

355



Subject to

C1, C2, C′3, C4, C5, C6.

As we can observe the above problem formulation, two
variables 𝑥𝑥𝑎𝑎

𝑢𝑢,𝑣𝑣 and 𝑦𝑦𝑣𝑣,𝑙𝑙 are linear in the objective functions and
constraints function. Since 𝑦𝑦𝑣𝑣,𝑙𝑙 is restricted to integer, we can
regard this problem as a mixed integer linear programming
(MILP) problem. The MILP problem is basically a decision
making problem. The BB method is widely employed to solve
general MILP problems but the computational complexity and
time is exponential in the size of the MILP problem. Thus, it is
a key research challenge to reduce the complexity.

III. THE PROPOSED BB METHOD

As we discussed in section I, branch variable selection is a
key task of the BB method. The branching of the BB method is
to choose a fractional variable in the search tree. If the
branching is not efficient, it fails the sub-problem simplification
and increase the size of the BB method tree. The objective of
branch variable selection is to reduce the number of search
nodes. There are multiple approaches to determine the
branching rule. For example, one of the common approaches is
the most fractional variable. We score candidate variables and
measure their effectiveness. Among them, we select one
candidate with fractional part closest to 0.5. Another approach
is to give them a branching priority in terms of different target
metrics. Another approach is to check the progress before actual
branching and then branch on fractional variable with strong
branch by tracking. We call this strong branching. In terms of
the children node expansion, it is the most efficient way but the
main disadvantage is a huge computational cost. AI techniques
can used to learn and estimate the scoring. They enable us to
improve the computational time and reduce the number of the
explored nodes. This process can be regarded as supervised
learning. We call this imitation learning. Consider a search tree
for a MILP and a node M with objective function value �̌�𝑧,
solution �̌�𝑠, variable 𝑠𝑠𝑗𝑗  and candidate variable set 𝒞𝒞 in the search
tree. Two children nodes 𝑀𝑀𝑗𝑗

− and 𝑀𝑀𝑗𝑗
+ are obtained from

branching on j up-fractionality and down-fractionality. They
have feasible values �̌�𝑧𝑗𝑗− and �̌�𝑧𝑗𝑗+. If𝑀𝑀𝑗𝑗

− and 𝑀𝑀𝑗𝑗
+ are in feasible,

�̌�𝑧𝑗𝑗− and �̌�𝑧𝑗𝑗+  are set to a large value. The change can be
expressed as Δ𝑗𝑗− = �̌�𝑧𝑗𝑗− − �̌�𝑧 and Δ𝑗𝑗+ = �̌�𝑧𝑗𝑗+ − �̌�𝑧. It is important to
make a decision on which fractional variable to branch. A
branching rule is defined by its score function 𝜁𝜁() as follows:

ℬ𝑗𝑗 = 𝜁𝜁(max�Δ𝑗𝑗−, 𝜖𝜖� , max�Δ𝑗𝑗+, 𝜖𝜖�) (13)

where 𝜖𝜖 is a small constant (For example, 10-6) [13]. The
product as the score function, 𝜁𝜁(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎𝑏𝑏, was proposed in
[13] in order to make a balance between the subtree sizes. It
attempts to find the variable with the maximum score of (13) by
tracking the branching process in the candidate set 𝒞𝒞. We
propose a weighting factor 𝜔𝜔𝑗𝑗  and (13) is rewritten as follows:

ℬ𝑗𝑗 = 𝜔𝜔𝑗𝑗𝜁𝜁�max�Δ𝑗𝑗−,𝜖𝜖� , max�Δ𝑗𝑗+, 𝜖𝜖��. (14)

The weighting factor 0 < 𝜔𝜔𝑗𝑗 < 2 is determined by machine
learning algorithms. Machine learning algorithms (ex. a linear

regression, support vector machine, deep learning and so on)
that are able to perform prediction can be used for the weight
factor selection. In this paper, a linear regression model is used.
Using the training data sets about variable selection, a machine
learning model is trained. After training machine learning
model enough, we can predict the variable selection at test data
sets. Depending on the training results, each variable is
weighted differently. The value of 𝜔𝜔𝑗𝑗𝑗 has greater than 1 when
a variable is highly likely selected. The weight factors satisfy
𝐸𝐸[𝛚𝛚] = 1.

Assume that we solve an optimization problem 𝒫𝒫 = (𝒮𝒮,ℱ)
where 𝒮𝒮 and ℱ are a search space and an objective function,
respectively. The search space means a set of candidate
solutions. The objective function is ℱ: 𝒮𝒮 → ℝ. We find an
optimal solution 𝑠𝑠∗ ∈ arg min𝑠𝑠∈ 𝒮𝒮 ℱ(𝑠𝑠). A search tree T of sub-
problem is constructed by the BB method. A feasible solution
�̌�𝑠 ∈ 𝒮𝒮 is globally stored. We find a new subset of the search
space 𝒞𝒞 ⊂ 𝒮𝒮 in order to explore from a queue 𝒬𝒬 of unexplored
subsets. If a solution �̂�𝑠´ ∈ 𝒞𝒞 has a better value than �̂�𝑠 (Namely,
ℱ(�̂�𝑠´) < ℱ(�̂�𝑠)), the solution is updated. If there is no solution
better than �̂�𝑠 (Namely,ℱ(�̂�𝑠´) ≥ ℱ(�̂�𝑠),∀𝑠𝑠), the subset is pruned.
Otherwise, we divide the subset 𝒞𝒞 into 𝒞𝒞1,𝒞𝒞2, … ,𝒞𝒞𝑟𝑟 that are
pushed onto 𝒬𝒬. If there is no unexplored subset in the queue 𝒬𝒬,
we terminate the BB method and return the solution. The
followings are the pseudo codes of the proposed BB method
and variable selection with machine learning.

Procedure the proposed BB method
Set 𝒬𝒬 = 𝒮𝒮
Initialize �̂�𝑠
while 𝒬𝒬 ≠ ∅ do
 Choose a subset 𝒞𝒞 from 𝒬𝒬 to explore

if �̂�𝑠´ ∈ {𝑠𝑠 ∈ 𝒞𝒞|ℱ(𝑠𝑠) < ℱ(�̂�𝑠} can be found then
  Set �̂�𝑠 = �̂�𝑠´

if 𝒞𝒞 can’t be pruned then
Divide 𝒞𝒞 into 𝒞𝒞1,𝒞𝒞2, … ,𝒞𝒞𝑟𝑟 by variable selection with
weight prediction of machine learning

  Put 𝒞𝒞1,𝒞𝒞2, … ,𝒞𝒞𝑟𝑟 into 𝒬𝒬
end if

  Get rid of 𝒞𝒞 from 𝒬𝒬
end while
return �̂�𝑠
End procedure

Procedure the variable selection with weight prediction of
machine learning

Input Subset of the current node 𝒞𝒞 with its optimal solution
 - Define branching candidate set 𝒢𝒢 = {𝑖𝑖 ∈ 𝐼𝐼|�̂�𝑠𝑖𝑖 ∉ 𝕫𝕫}

- Compute the score ℬ𝑗𝑗 = 𝜔𝜔𝑗𝑗𝜁𝜁�max�Δ𝑗𝑗−, 𝜖𝜖� , max�Δ𝑗𝑗+, 𝜖𝜖��
for each candidate 𝑖𝑖 ∈ 𝒢𝒢, where 𝜔𝜔𝑗𝑗  is given by machine
learning prediction.

Return 𝑖𝑖 ∈ arg min𝑖𝑖∈ 𝒢𝒢 ℬ𝑗𝑗
End procedure

IV. NUMERICAL ANALYSIS

We formulated the IoT network deployment problem as MILP
problem (12) in order to minimize the transmission and
computation cost. Using a MILP solver of Matlab [14] and
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YALMIP [15], we solve the IoT device deployment problem to
minimize the transmission and computation cost between
networks nodes. Hardware specification is 1.7GHz dual core
CPU, 8GB RAM, and 64 bit OS system. The key simulation
configurations are summarized as follows:

- MILP solvers: the conventional BB method and the
proposed BB method.

- Weighting factor 0 < 𝜔𝜔𝑗𝑗 < 2
- Machine learning algorithm: linear regression
- Integer grid points: N = 20, 25, 30
- Density of IoT devices, Fusion nodes and base

stations: i=0.1, f =0.05 and b =0.05
- Network component nodes (IoT devices, Fusion nodes

and base stations) locations are randomly selected in
the integer grid points

- Total demand of applications by a base station:
∑𝐷𝐷𝑣𝑣,𝑎𝑎 = 20

- Computational cost range at base stations : 20 ≤ 𝛾𝛾𝑎𝑎𝑏𝑏 ≤
100

- Capacity range of base stations: 500 ≤ 𝐶𝐶𝑢𝑢,𝑎𝑎 ≤ 1500
- Capacity range of fusion stations: 8000 ≤ 𝐶𝐶𝑣𝑣,𝑎𝑎 ≤

16000
- Bandwidth range for application a: 1 ≤ 𝑊𝑊𝑎𝑎 ≤ 3
- Transmission power range for application a : 5 ≤

𝑝𝑝𝑎𝑎
𝑢𝑢,𝑣𝑣 ≤ 10

We evaluate both conventional BB method and the proposed
BB method with weighting factor and compare the objective
values, the number of explored nodes in the search tree and
computational time as shown in figure 2.

(a)

                              (b)                                              (c)

Fig 2 Objective values (a), number of explored nodes (b) and
computational time (c)

As we can observe figure 2, the proposed BB method
significantly reduces the number of explored nodes and
computational time at N = 30. In the proposed BB method, we
need only 10% of explored nodes and 18% of computational
time to find the optimal solution for the MILP problem. This
approach will be useful when deploying the medium size of IoT
devices. However, we assume the linear regression model is
fully trained and the weighting factors are accurate. If we do not
have the fully trained model, the performances are similar to the
conventional BB method. If it is not well trained with the
enough number of the training set, the performance of the
proposed BB method is even worse. In addition, the formulated
MILP problem can be solved well for the medium size of
network nodes and applications. When we have a large number
of network nodes (N>40) and applications (∑𝐷𝐷𝑣𝑣,𝑎𝑎>30), it is not
solvable well. Figure 3 illustrates the mapping of IoT devices
to fusion nodes after solving the MILP problem.

(a)

(b)

20 25 30
N

2.5

3

3.5

4

4.5

5

5.5

6 107

BB method
Proposed BB method
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(c)
Fig 3 Mapping of IoT devices to fusion nodes at N = 20 (a), 25 (b) and 30

(c)

As we can observe figure 3, we solve the MILP problem and
find the optimal connections between IoT devices and fusion
nodes. The mapping of both BB methods is same. In figure 3,
some fusion nodes are not connected to IoT devices. It
represents that the fusion nodes are not in use in the optimal
solution and go sleep. Sometime, the randomly generated
demands and capacities can exceed the constraints and lead to
infeasible problems in particular at the large number of IoT
devices and applications. We can’t find the optimal solution of
the MILP problem.

V.CONCLUSION AND SUMMARY

 In this paper, we investigate the IoT device deployment
problem in order to minimize the transmission and computation
cost. The optimization problem is formulated as a MILNP
problem. After relaxing the constraints and transforming to a
MILP problem, we solve the problem using the proposed BB
method. The proposed BB method includes a machine learning
function and give a weighting factor to score function of
branching rule. When having a well trained machine learning
model, the weighting factor guides to find us through accurate
branch variable selection. Thus, it reduces the number of
explored nodes and computational time significantly. However,
we assumed that the machine learning model is fully trained and
the weighting factor is accurate. When we have moving IoT
devices, varying channel models, and flexible network
configuration, the training will be very challenging. Thus, as
further works, how to efficiently train the machine learning
model should be investigated. In addition, the proposed method
is limited when we have a large number of network nodes and
applications. Thus, we should investigate further generalization
of the proposed method.
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