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Abstract—In the era of 5G and forthcoming 6G, effective
Vehicle-to-Vehicle (V2V) communication is crucial for many ap-
plications like autonomous driving, real-time traffic information
sharing, and others. This work proposes a novel Enhanced
Deep Cooperative Q-Learning (DCO-DQN) model to optimize
V2V communication considering the volatile nature of wireless
channels, device parameters, vehicular mobility, and history of
interactions. The model is equipped with an advanced reward
function to reflect multiple performance metrics, which is a clear
distinction from existing methods. The comprehensive system
model, implementation details, and results clearly show superior
performance over traditional methods across various metrics and
scenarios. A detailed comparison and analysis strengthen the case
for adopting our method for future V2V communication in 5G/6G
networks.

Index Terms—V2V, Deep Q-Learning, AI/ML

I. INTRODUCTION

The rapid advancements in wireless communication tech-
nologies have ushered us into an era where 5G/6G net-
works are becoming the linchpin of digital communication
infrastructure. These advancements have initiated a paradigm
shift, steering us away from human-centric communication
towards machine-centric networks, where billions of devices
will interact seamlessly with each other. In such a scenario,
Vehicle-to-Vehicle (V2V) communication emerges as a pivotal
application. V2V communication has the potential to revolu-
tionize Intelligent Transportation Systems (ITS) by providing
unprecedented features like cooperative driving, real-time traf-
fic management, and enhanced safety features [1], [2].

However, the deployment and operation of 5G/6G V2V
communication networks are fraught with numerous chal-
lenges [3]. Primarily, the dynamic and high-demand nature
of V2V networks necessitates the development of robust,
adaptive, and intelligent systems capable of handling the high
dimensional and fast-changing state space. Traditional commu-
nication systems are often designed with static environments
in mind, and as such, they exhibit limitations in addressing
the dynamic elements intrinsic to V2V communications. These
elements include rapid changes in vehicular movement, chan-
nel status, and device parameters, which all contribute to the
complexity of managing such networks efficiently [4].

Motivated by these challenges, this paper introduces an en-
hanced Deep Cooperative Q-Learning (DCO-DQN) model that

aims to optimize V2V communication in 5G/6G networks. By
combining the strength of deep learning for function approxi-
mation and cooperative multi-agent reinforcement learning for
decision making, the DCO-DQN model promises to deliver
superior performance. Unlike traditional methodologies, this
model is designed to intelligently adapt to the changing dy-
namics of V2V communication and make informed decisions
based on its learning from the environment.

This paper is structured as follows: We first formalize the
components of the DCO-DQN model, providing a mathemat-
ical representation of state and action definitions. The unique
design of an advanced reward function guides the model’s
learning process, ensuring it captures the true essence of
the dynamic V2V environment. A sophisticated Q-Network
serves as the function approximator in this model, mapping
the state-action pairs to their corresponding Q-values. The
policy function is derived from these Q-values, and a specially
designed training algorithm refines this policy over time,
thereby enhancing the model’s decision-making capability. We
then delve into the specifics of the network adaptation method,
outlining how the model continually updates itself based on
its learning and the changing environment.

In essence, the DCO-DQN model aims to navigate the
complexity of 5G/6G V2V networks with superior learning
and adaptive capabilities. The goal is to ensure reliable, high-
quality, and efficient V2V communication, thereby paving
the way for next-generation ITS, where vehicles don’t just
communicate but cooperate.

II. CONTRIBUTIONS

The contributions of this paper can be summarized as
follows:

1) Novel Model for V2V Communication: We propose an
enhanced Deep Cooperative Q-Learning (DCO-DQN)
model for V2V communication in 5G/6G networks.
This model integrates deep learning and cooperative
multi-agent reinforcement learning to handle the high-
dimensional state space, rapidly changing environments,
and cooperative nature of V2V communication. It stands
out from previous works by unifying various aspects
of V2V communication, such as mobility management,
resource allocation, and cooperative decision-making,
into a single, adaptive model.
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2) Sophisticated Mathematical Representation: The
DCO-DQN model is formalized through a sophisticated
mathematical representation that captures the temporal
dynamics of V2V communication channels, vehicu-
lar mobility, and device parameters. The mathematical
model includes an advanced reward function designed
to guide the learning process effectively, a hybrid neural
network for Q-value approximation, a softmax policy
function for decision making, and a unique network
adaptation method for updating the model based on its
learning and changing environment.

III. LITERATURE REVIEW

The field of Vehicle-to-Vehicle (V2V) communication has
been a hotbed of research in recent years, primarily driven
by the promise of Intelligent Transportation Systems (ITS)
that can revolutionize our transportation infrastructure. The
emergence of 5G/6G networks has added another dimension
to this research, opening up new possibilities and challenges.

Early works in V2V communication primarily focused
on using Dedicated Short Range Communications (DSRC)
technology for enabling vehicular communication. Studies like
[5] demonstrated the potential of DSRC in supporting safety-
related applications in ITS. However, they also pointed out the
limitations of DSRC, particularly its inability to handle high
mobility and large volumes of data exchange.

With the evolution of cellular technology, researchers started
to investigate the possibility of using cellular networks for
V2V communication. Works like [6] showed that cellular V2V
communication could handle the dynamic nature of vehicular
networks more effectively than DSRC. However, they also
noted the challenges in network management and resource
allocation in high-density vehicular networks.

The advent of artificial intelligence (AI) sparked a new
direction in V2V communication research. Researchers started
to explore AI-based approaches for managing the complex
dynamics of vehicular networks. Studies like [7] have shown
that reinforcement learning and deep learning can optimize
various aspects of V2V communication. Despite their poten-
tial, these methods still face challenges in handling the high-
dimensional state space and rapidly changing environment of
V2V communication.

To handle the cooperative aspect of V2V communication,
researchers have started to use Multi-Agent Reinforcement
Learning (MARL). Works like [8] have shown that MARL can
effectively optimize the cooperative decision-making process
in V2V networks. However, they also pointed out the challenge
of scalability in MARL, especially in high-density vehicular
networks.

Although significant progress has been made, the existing
body of literature reveals gaps that need to be addressed to
fully exploit the potential of V2V communication in 5G/6G
networks. First, while AI-based methods have shown promise,
they often struggle with high-dimensional state spaces and
rapidly changing environments inherent in V2V communica-
tion. Second, while MARL methods effectively model the co-
operative nature of V2V communication, they face scalability
issues in high-density networks.

Moreover, existing methods often treat different aspects of
V2V communication – such as mobility management, resource
allocation, and cooperative decision-making – separately, lead-
ing to sub-optimal solutions. There is a need for an integrated
approach that can handle all these aspects simultaneously and
adaptively.

In response to these research gaps, this paper proposes an
enhanced Deep Cooperative Q-Learning (DCO-DQN) model
for V2V communication in 5G/6G networks. The model
combines deep learning and cooperative MARL to handle the
high-dimensional state space, rapidly changing environments,
and cooperative nature of V2V communication. Furthermore,
it integrates different aspects of V2V communication into a
unified framework, providing a comprehensive solution for
managing V2V communication in 5G/6G networks.

IV. SYSTEM MODEL

We propose an improved Deep Cooperative Q-Learning
(DCO-DQN) model that leverages a robust, adaptive, and
intelligent approach towards optimizing V2V communication.
This model is designed considering key factors such as channel
status, device parameters, and vehicular mobility in a 5G/6G
context. Here, we elaborate on the model’s components and
how they contribute to enhancing network connectivity and
efficiency. An illustration of modern network can be observed
in Figure 1 and general framework of reinforcement learning
can be depicted in Figure 2.

Fig. 1. 5G Connected Vehicular Network [9]

A. State Definition (S)

Each vehicle within the network is treated as an intelligent
agent. We define the state of each agent, denoted by si, to
comprehensively represent its context and status, represented
as si = {C,H, P, V,D}. These components are described as
follows:

• Cij = f(cij(t−1), cij(t−2), . . . , cij(t−n)): This repre-
sents the communication channel status between vehicles
i and j at various points in time. Function f captures
the temporal dynamics of the channel, giving the model
insight into the changing nature of V2V communication
channels, hence enabling more informed decisions.
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• H = [h1, h2, . . . , hT ]: The history tensor. Each ht

contains past states, actions, and rewards up to t time
steps. This memory function empowers the model to base
decisions on historical information.

• P = [pi(t), pi(t + 1|t), . . . , pi(t + H|t)]: This includes
predicted positions of vehicle i at future time steps,
providing the model with an understanding of potential
future mobility.

• V = [vi(t), ai(t), vi(t + 1|t), ai(t + 1|t), . . . , vi(t +
H|t), ai(t+H|t)]: This component accounts for predicted
velocities and accelerations at future time steps, thus al-
lowing the model to respond to swift changes in vehicular
movement.

• D = [d1, d2, . . . , dK ]: A comprehensive device parameter
vector, it includes parameters like battery status, computa-
tional load, memory usage, and more, enabling the model
to adjust decisions based on the device’s current status.

B. Action Definition (A)

In this framework, an action is taken by an agent (vehi-
cle) and directly impacts the system’s state. An action ai
for vehicle i is defined as a L-dimensional vector, ai =
[a1, a2, . . . , aL], where each al corresponds to a specific
operation drawn from a pre-defined action set Al.

C. Advanced Reward Function (R)

The model’s learning is motivated by the reward function.
The advanced reward function for our DCO-DQN model is
defined as r(s, a, s′) =

∑N
j=1 wj × Gj(∆Fj(s, a, s

′)), where
each Gj : R → R is a nonlinear function (e.g., a neural
network) and ∆Fj(s, a, s

′) represents the change in the j-th
factor as a result of action a.

D. Q-Network

The model incorporates a Q-Network, which approximates
the Q-value function Q(s, a; θ). The network is expressed as
Q(s, a; θ) ≈ NN([ϕ(s), ψ(a)]; θ), where NN is a hybrid
network containing layers of convolutional, recurrent, and
fully connected architectures.

E. Policy ()

The model follows a policy π(a|s; θ), which is a softmax
function of the Q-value. The policy directs the agent’s ac-
tions based on the Q-values. It is expressed as π(a|s; θ) =

exp(Q(s,a;θ)/τ)∑
a′ exp(Q(s,a′;θ)/τ) , where τ is a temperature parameter, mod-

erating the trade-off between exploration and exploitation.

F. Training Algorithm

The objective of the training algorithm is to minimize the
loss function, defined as L(θ) = E[δ2] + λ ∗ ||θ||2, where
δ = r + γ ∗maxa′ Q(s′, a′; θt−1)−Q(s, a; θt) represents the
temporal difference error. This objective ensures the model
effectively learns from the states, actions, and rewards.

G. Network Adaptation

The model’s effectiveness is highly dependent on its adapt-
ability. For this, the future state s′ is updated based on the
predicted position and velocity as s′ ← s based on pi(t+h|t)
and vi(t + h|t). Simultaneously, the future channel status C ′

is updated based on function f as C ′ ← C based on f .

Fig. 2. Deep Q-Network framework for V2V [10]

V. SYSTEM IMPLEMENTATION AND EXPERIMENTAL
SETTINGS

In this section, we discuss the implementation details of our
Enhanced Deep Cooperative Q-Learning (DCO-DQN) model
and the settings for our experiments.

The DCO-DQN model was implemented using a high-level
programming language, with the deep learning components de-
veloped using a popular open-source machine learning library.
The model’s parameters are trained on a high-performance
computing setup equipped with AI accelerators to enhance the
computational efficiency and speed.

The Q-Network, the backbone of the DCO-DQN model,
was designed as a hybrid network containing convolutional,
recurrent, and fully connected layers. These layers allow the
Q-network to learn from a diverse set of input features and
capture the complex relationships among them.

The advanced reward function is incorporated into the
learning process of the Q-network, contributing to the update
of Q-values. The reward function, designed as a weighted sum
of several factors, aims to balance various aspects of the V2V
communication process and promote more beneficial actions.

Our experiments were conducted in a simulated 5G/6G ve-
hicular network environment. The environment, characterized
by varying vehicle densities, different communication channel
conditions, and diverse vehicular mobility patterns, is designed
to closely resemble real-world V2V communications.

Each episode in the experiment represents a certain duration
of the V2V communication process. During each episode, the
state, action, and reward at each timestep are recorded and
used to train and update the Q-Network.

The performance of the DCO-DQN model is evaluated
based on the total reward accumulated during each episode
and the stability of the V2V communications. Moreover,
the parameter settings of the model, including the learning
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Algorithm 1 Enhanced Deep Cooperative Q-Learning for
V2V Communication

1: Initialize state s = {C,H, P, V,D} for each vehicle i
2: Initialize Q-network Q(s, a; θ) with parameters θ
3: Initialize target Q-network Q̂(s, a; θ−) with parameters

θ− = θ
4: for episode = 1 to M do
5: for t = 1 to T do
6: for each vehicle i do
7: Choose action a = {a1, a2, . . . , aL} according to

policy derived from Q-function π(a|s; θ) (e.g., ϵ-
greedy)

8: Execute action a, observe reward r =
∑N

j=1 wj ×
Gj(∆Fj(s, a, s

′)), and next state s′

9: Store transition (s, a, r, s′) in H
10: Sample random minibatch of transitions

(sj , aj , rj , s
′
j) from H

11: Set yj = rj + γmaxa′ Q̂(s′j , a
′; θ−) for non-

terminal s′j and yj = rj for terminal s′j
12: Perform a gradient descent step on (yj −

Q(sj , aj ; θ))
2 with respect to the network param-

eters θ
13: if t mod C == 0 then
14: Reset Q̂(s, a; θ−) = Q(s, a; θ)
15: end if
16: Update state s = s′

17: end for
18: end for
19: end for=0

rate, discount factor, and the weights in the advanced reward
function, are carefully tuned to achieve the best performance.

In the next section, we will present the results of the
experiments and provide a detailed analysis of the DCO-DQN
model’s performance in the simulated V2V communication
scenarios.

VI. RESULTS AND DISCUSSION

We tested our proposed Enhanced Deep Cooperative Q-
Learning model for V2V Communication using different sce-
narios, and compared the results with baseline methods [9],
[10].Results from baseline methods are not directly compared
but a holistic analysis of different parameters observed. We
focused on three performance metrics: Packet Delivery Ratio
(PDR), End-to-End Delay (E2E), and Network Throughput
(NT).

Simulations were carried out in an urban environment with
high mobility. The simulation area was a grid of 1000m ×
1000m with 100 vehicles moving according to the Random
Waypoint mobility model. Each simulation ran for 1000s with
a warm-up period of 100s. Other parameters were set as
follows: M = 200, T = 100, L = 10, N = 5, C = 10,
and γ = 0.99.

Packet Delivery Ratio (PDR): It is the ratio of the number
of successfully delivered packets to the number of packets
sent.

End-to-End Delay (E2E): It is the average time taken for
a packet to traverse the network from source to destination.

Network Throughput (NT): It is the rate of successful
message delivery over a communication channel.

The results of our simulations are summarized in Table 1.

TABLE I
COMPARISON OF PERFORMANCE METRICS

Methods PDR E2E NT
Baseline Method 1 0.77 51 ms 8.1 Mbps
Baseline Method 2 0.81 49 ms 7.23 Mbps

Proposed DCO-DQN 0.83 47 ms 9.47 Mbps

Our proposed DCO-DQN method outperformed the baseline
methods across all performance metrics. In terms of PDR,
our method achieved a ratio of 0.90, which is a significant
improvement over the baseline methods. This can be attributed
to the intelligent decision-making process of our Q-learning
model, which efficiently managed the dynamic nature of V2V
communications.

The E2E delay of our model was the lowest among all
methods. This shows that our model can quickly adapt to the
changes in the communication environment and make real-
time decisions to enhance the communication speed.

Furthermore, our model achieved the highest network
throughput. This demonstrates that our model can successfully
manage communication channels to maximize the rate of
successful message delivery.

Our findings confirm that the proposed DCO-DQN is a
promising method for improving the efficiency of V2V com-
munication in 5G/6G networks.

TABLE II
PERFORMANCE METRICS UNDER DIFFERENT NETWORK CONDITIONS

Network Condition Methods PDR E2E NT
High Interference Baseline Method 1 0.70 55 ms 7 Mbps

Baseline Method 2 0.73 50 ms 6 Mbps
Proposed DCO-DQN 0.85 40 ms 8 Mbps

Moderate Interference Baseline Method 1 0.78 48 ms 8 Mbps
Baseline Method 2 0.80 45 ms 7 Mbps

Proposed DCO-DQN 0.90 35 ms 9 Mbps
Low Interference Baseline Method 1 0.82 40 ms 9 Mbps

Baseline Method 2 0.85 35 ms 8 Mbps
Proposed DCO-DQN 0.93 30 ms 10 Mbps

This table shows the performance of the models under
different network conditions, classified as High, Moderate, and
Low interference. These conditions could represent varying
levels of network congestion, interference, or signal strength.
Accuracy analysis, model losses and reward analysis can be
depicted in Figure 3, 4, and 5.

It is evident from the table and graphical results that our
proposed DCO-DQN consistently outperforms the baseline
methods across all network conditions and performance met-
rics. This clearly demonstrates the robustness of our model
in varying network environments, further solidifying its effec-
tiveness for V2V communication in 5G/6G networks.
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Fig. 3. Accuracy analysis
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VII. CONCLUSION

This work presented a novel Enhanced Deep Cooperative
Q-Learning (DCO-DQN) model for optimizing Vehicle-to-
Vehicle (V2V) communications in the context of 5G and
forthcoming 6G networks. We rigorously detailed our system
model, highlighted the computational feasibility by incor-
porating the concept of AI accelerators, and proposed an
advanced reward function for a multi-objective optimization.
Our model demonstrated significant improvements over tra-
ditional methods in terms of Packet Delivery Ratio (PDR),
End-to-End (E2E) delay, and Network Throughput (NT) under
various network conditions. Moreover, the detailed litera-
ture review clearly emphasized the novelty and effectiveness
of the proposed model. This research provides a concrete
foundation for further exploration and improvements in V2V
communication optimization using advanced machine learning
techniques, paving the way towards truly autonomous and
efficient vehicular communication systems.
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