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Abstract—Multiple Object Tracking (MOT) in computer vision
is a fundamental task focused on identifying and monitoring the
movement of multiple objects within a video sequence. MOT
plays a crucial role in various applications, including surveil-
lance, autonomous driving, and human-computer interaction.
The primary objective is to consistently and accurately follow
the trajectories of individual objects across frames while dealing
with challenges such as occlusions, and varying appearances.
This research paper presents an approach for tackling the chal-
lenging task of multiple categories of object tracking using deep
learning techniques, combined with the utilization of enriching
contextual features during training. In this study, we address
the complexities of tracking objects by using temporal-wise
similarity to improve features for consecutive frames. To enhance
the performance of our tracking framework, we introduce a
training strategy by adding to the original dataset a sub-dataset
wherein large input images are divided into sub-patches to reach
competitive results regarding tracking accuracy and precision
with 72.4% and 81.6% on MOT dataset, respectively.

Index Terms—Object Tracking, Augmented Training Data,
Multiple Categories Tracking, Sub-Patches Based Annotation.

I. INTRODUCTION

In recent years, the field of computer vision has witnessed
a remarkable evolution, transforming the way we perceive
and interact with our visual environment. One of the most
challenging and crucial tasks within computer vision is object
tracking as the next evolution of object detection [1], [2].
Object tracking is a fundamental component in various appli-
cations such as smart traffic, robotics, and augmented reality.
Accurate and robust tracking of multiple object categories
in complex scenes remains a formidable challenge due to
the diverse range of change object appearances, temporary
occlusions, and environmental dynamics conditions.

Object tracking, essentially the process of following and
predicting the trajectory of objects across frames in a video
sequence, demands a comprehensive understanding of object
features and their interactions with the surrounding context.
Traditional methods often rely on handcrafted features which
may struggle to handle the inherent variability and complexity
present in real-world scenarios. The advent of deep learning
has revolutionized this domain, offering a data-driven approach
that learns intricate patterns directly from the data, opening the
way for significant advancements in object tracking.
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One approach involves the integration of convolutional
neural networks (CNNs) into the tracking pipeline. Studies
[3], [4] have demonstrated the effectiveness of employing
deep networks for object detection, feature extraction, and
data association, resulting in enhanced tracking performance
even in challenging scenarios. Besides, the concept of end-to-
end multiple object tracking has gained success, exemplified
in research [5] by Wu et al., This paradigm seeks to unify
object detection, tracking, and segmentation within a single
framework, leveraging on the strengths of each task to achieve
more accurate and comprehensive tracking outcomes.

Two prominent and influential challenges in this domain are
the Multiple Object Tracking (MOT) Challenge [6] and the
VisDrone Challenge [7] with up-to-date respective datasets.
The Multiple Object Tracking Challenge (MOT Challenge)
has become a standard in the field focusing on the task of
tracking multiple objects across frames in video sequences.
The challenge datasets encompass a list of real-world scenarios
with diverse challenges such as scale variations, and object
interactions. As a result, the MOT Challenge stands as a
fundamental study for the improvement of object-tracking
techniques applying autonomous systems. In parallel, the
VisDrone Challenge embodies the difficulties and intricacies of
aerial sight, accentuating the examination and comprehension
of imagery obtained by drones. The challenge datasets consist
of aerial pictures and videos obtained in various circumstances,
encompassing varied heights, alterations in lighting, and differ-
ent weather conditions. The VisDrone Challenge has not only
fostered advancements in computer vision for aerial purposes
but has also underscored the wider significance of visual
cognition in the era of drones with some studies [8], [9].

In this work, we focus capitalizes on the power of deep
learning by introducing an approach that leverages augmented
training data. Augmented training data refers to the strategic
enrichment of the training dataset with artificially generated
examples, aimed at enhancing the robustness and generaliza-
tion capabilities of the model. By splitting consecutive image
frames into sub-patches, other objects within the subsequential
images are reassigned as new objects with new identifiers.
Besides, we need to consider new coordinates as well as new
bounding boxes of local objects in the methodology section.
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II. RELATED WORK

In this section, we briefly introduce research papers related
to MOT has been applied to both MOT [6] and Visdrone [7]
datasets. Integrating detection and tracking through a unified
network have commenced to captivate increased interest. The
detection branch combines with re-ID feature extractor [10]
in a single network to decrease inference time while keeping
competitive tracking accuracy. Also, jointing detection and
motion prediction in [11] enhanced occlusion handling and
reduced identity-switching issues. The works inside these
papers are close to our direction that boosts the accuracy
detection as well as object tracking in the Aerial dataset.

A. FairMOT: On the Fairness of Detection and Re-
Identification in Multiple Object Tracking

The primary issue with framing multi-object tracking as
a combination of multi-task learning involving object de-
tection and re-identification within a single network is that
the conventional approach of prioritizing detection over re-
identification in existing one-shot trackers leads to an unfair
learning of the re-ID network. In training, the model becomes
inclined towards generating precise object proposals rather
than developing superior re-ID features. Consequently, even
though the detection outcomes are satisfactory, this imbalance
contributes to a significant count of identity switches.

FairMOT [3] tackles the issue of favoring the main de-
tection task by adopting an anchor-free methodology for the
detection and re-identification components. This technique in-
volves estimating object center positions [12] and dimensions
through position-sensitive measurement maps. By doing so, it
rectifies the inequitable treatment of the detection aspect and
successfully develops good re-ID characteristics. This leads to
a balanced compromise between detection and re-identification
performance.

Within the framework of FairMOT, the training process
involves a mix of a detection loss, a center-ness loss, and
a re-ID loss. This combination incentivizes the model to
acquire excellent features for both the detection and re-
identification assignments.FairMOT discovered that acquiring
lower-dimensional characteristics is more advantageous for
one-shot MOT. Conversely, high-dimensional re-ID features
detrimentally affect object detection precision, as the two tasks
compete with each other, consequently causing adverse effects
on the ultimate tracking accuracy.

FairMOT has been trained on mainly MOT and CrowdHu-
man [13] datasets with unified object sizes. Experimentally,
we realized that when applying FairMOT to the Visdrone
dataset, tracking small objects is not really good, especially
with objects moving close to the edge of the frame. Therefore,
dividing into sub-part consecutive images allows the model to
isolate and analyze the small object with less interference from
the surrounding context like Figure 1.
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Fig. 1: Adding Augmented training data by splitting the
original image into sub-patches: Updating new coordinates for
object following new size of sub-images.

B. GIAOTracker: A comprehensive framework for MCMOT
with global information and optimizing strategies

The GIAOTracker [9] method is a thorough system for
tracking multiple objects in drone videos, covering various
classes. It employs worldwide data and optimization tech-
niques. It comprises three phases: real-time tracking, global
connection, and post-processing. The initial stage produces
dependable tracklets by considering camera and object move-
ments, as well as object appearance. In the second phase, it
connects these tracklets into trajectories by utilizing global
information. In the end, the trajectories undergo refinement
using four post-processing approaches including denoising,
interpolation, rescoring and fusion.

By considering these multifaceted factors of camera and
motion, the system generates tracklets that exhibit a high
degree of reliability and accuracy. This initial step serves as
the foundation upon which subsequent phases build, ensuring
that the tracking process is not only precise but also adaptable
to the dynamic nature of drone video environments.

The global connection phase takes the intermediate stage,
where the GIAOTracker method leverages the power of global
information integration. This holistic approach to trajectory
construction enables the system to capture and represent the
intricate interactions and movements of objects within the
video, providing a comprehensive overview of object behavior.
GIAOTracker has shown competitive performances related to
tracking accuracy; however, with multiple stages framework,
it is not easy to adapt to real-time applications that required
short inference time.

III. METHODOLOGY

Our study has developed based on FairMOT [3] as the
backbone framework. Our target is to provide flexibility-
augmented training data which helps the model generalize
better to different scales and viewpoints when adding to
the original training data a sub-dataset. Besides, the model
employs a local tracklet re-ID that involves calculating a
similarity matrix of the current and historical tracklets and
using it to enhance the tracklet features. The whole end-to-
end unified system is presented in Figure 2.
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Fig. 2: Multiple Object Tracking approach with Enriching Training Data Strategy and Enhanced Re-ID features with Timewise
Similarity: Training data is expanded by adding Sub-patches dataset into the Original data. The embedding feature of frames
is enhanced when comparing comprehensively with historical tracklets in previous frames.

A. Flexibility-Augmented Training Data on Aerial Videos

Popular aerial video datasets such as MOT and Visdrone
have their own characteristics. The MOT dataset focuses on
crowds of people with a variety of backgrounds and lighting
conditions; while the Drone dataset witnesses a variety of
objects classes and sizes. Failure to recognize small objects
is a challenge in object tracking. When we divide bigger
images into smaller sections, we generate additional training
samples, which may improve the range and inclusiveness of
the training dataset. The accurate detection of small objects
can be difficult, particularly when they are depicted by a
limited number of pixels in a large image. By breaking down
the image, the model can concentrate on tinier areas, thereby
augmenting the likelihood of correctly identifying the small
objects. The amount of training dataset contains the original
data and the extended part from sub-patches. Objects in the
center positions of larger frames can become new objects
located at the edges of sub-patches. This thing makes the
model detect well objects at the edge of videos when the model
has enough contextual edge information from the features
extractor.

While there are benefits to splitting large images for small
object detection as well as handling occlusions, it is important
to consider some potential drawbacks related to object frag-
mentation leading to increasing false positives for inference
phases. Dividing the large aerial images or videos for efficient

training is a common solution in the computer vision field;
however, with MOT tasks we can note that our splitting
images approach is not a naively normal solution when just
breaking down bigger images into sub-patches. Algorithm 1,
named Sub-Patches Tracking Annotation, has been proposed
to address potential errors. The key considerations are the
proportion of original training data used for Algorithm 1 and
the need to include the bounding box threshold as a criterion
for identifying new objects.

For simplicity, initial large images (H ,W ,C) will be divided
into four sub-patches: top-left, top-right, bottom-left, and
bottom-right (h,w,C) where h = H/2 and w = W/2. After
breaking down, the coordinates will be updated following
the division ratio and be determined to belong to which
sub-patches. We assume that a frame I has been divided
into four sub-patches I1, I2, I3 and I4 corresponding to top-
left, top-right, bottom-left and bottom-right. The distribution
coordinates for new objects D(x, y) with (x, y) are (top, left)
bounding box coordinates as follows:

D(x, y) =




I1, if (x, y) < (w, h)

I2, if x ≥ w and y < h

I3, if x < w and y ≥ h

I4, if (x, y) ≥ (w, h)

(1)

Especially for object tracking tasks, the identifier of objects
is unique to avoid misunderstanding for the model during the
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Algorithm 1 Sub-Patches Tracking Annotation
Input: Original Training data and Split Percentage

1: procedure PATCH BASED ANNOTATE(Data, percentage)
2: Split large images into 4 parts
3: wsub ← w/2 ▷ Update new image-patch size
4: hsub ← h/2
5: for images in video do
6: Read Annotation Line() ▷ Obtain (x̄,ȳ,bbox,id)
7: Distribute objects to respective patches
8: // Check size bounding box with threshold bbox ϵ
9: if w/2 + bboxw,h/2− (x̄, ȳ) < bboxw,h × ϵ then

10: Continue ▷ Ignore fragmented box
11: else
12: Update new coordinates and bbox size
13: Assign local identifiers with respective patches
14: end if
15: end for
16: Get Max ID() ▷ Get maximum id in original video
17: Update Global ID() ▷ Id will be unique in datasets
18: return (patches, new annotations)
19: end procedure
Output: Sub-dataset along additional IDs for new objects

training phase. The object identifier in augmented datasets that
are generated from the original datasets becomes new objects
with non-duplicated identifiers. Algorithm 1 also covers com-
plex cases when objects at the boundary of the split zone move
back and forth between the divided regions. New identifiers
of objects in sub-patches are defined as:

ID =

{
Ii.index(IDobj) + 1, if local ID
max+ Ii.index(IDobj).i+ i, if global ID

(2)

Where i indicates the sub-patches orders and max indicates
the maximum number of global objects.

B. Improvement of re-ID features through historical tracklet
with TimeWise Similarity

Adding augmented training data will make bias potential
issues; thus, improvement of re-ID features is necessary to
avoid missing trajectory of objects throughout the whole
surveillance videos. We have proposed the TimeWise Similar-
ity to measure the similarity and correlation between tracklets
across two adjacent image frames in a video. TimeWise
Similarity assesses how consistent the spatial and temporal
characteristics of the tracklets are between consecutive frames.
When applying backbone extractor [3], we have embedding
features E ∈ R128×HE×WE . The value of each element inside
TimeWise Similarity matrix can be obtained by computing
cosine similarity between two feature vectors XT

i and XT−1
j

∈ R128 respective with past and current re-ID frame features
when (i, j) ∈ (0, wh]:

𝐸𝐸𝑇𝑇

𝐻𝐻
×
𝑊𝑊

𝐸𝐸𝑇𝑇−1 𝜃𝜃𝑖𝑖,𝑗𝑗
𝑣𝑣𝑖𝑖 ∈ ℝ128

𝑣𝑣𝑗𝑗 ∈ ℝ128

𝐸𝐸𝑇𝑇

𝐸𝐸𝑇𝑇∗ =
𝐸𝐸𝑇𝑇 + 𝐸𝐸𝑇𝑇 × 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇

2

𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇

Fig. 3: The proposed Timewise Similarity Matrix and En-
hancement Embedding Feature Map

TWSwh×wh =




cos(θ11) cos(θ12) · · · cos(θ1wh)
cos(θ21) cos(θ22) · · · cos(θ2wh)

...
...

. . .
...

cos(θwh1) cos(θwh2) · · · cos(θwh2)




The size of each embedding feature vector in the re-ID
branch is fixed. The value of cos θij represents the similarity
of two feature vectors XT

i and XT−1
j :

cos(θ) =
XT ·XT−1

∥XT∥∥XT−1∥

=

n
i=1 X

T
i X

T−1
in

i=1(X
T
i )

2

n
i=1(X

T−1
i )2

(3)

Then we have the position vector of a current frame compared
to a past adjacent frame by getting averaging values following
the row of Timewise Similarity (TWS) matrix. This position
vector as supported information provides the change positions
as well as identifies objects in consecutive image frames in
videos. After that, we obtain the enhanced re-ID feature map
E∗

T by re-computing feature vectors as:

T∗
i =

Ti +Ti.cos(θi)

2
, with i ∈ (0, wh] (4)

In case the object appears in the previous frame and
disappears in the current frame, the enhanced re-ID feature T∗

may contain historical position information of these objects.
However, the primary tracking condition is still the detection
branch along offset as well as the box size of objects. There-
fore, the tracking results are less adversely affected in this
case.

IV. EXPERIMENTS AND RESULT

Here we provide our experimental results demonstrating the
effect of the Augmented Training Data approach related to
tracking accuracy and precision of model. Our multiple objects
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Fig. 4: The visual results on Visdrone 2019; our method showed the improvement related to detecting and tracking small
objects. Objects are assigned consistent IDs throughout consecutive image frames. Best viewed in color mode.
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Fig. 5: Comparison of two approaches with changing camera views and speed of objects in video. MOT framework reached
better results when detecting small objects with denser bounding boxes. ID switching issues still occur in some cases.

Table I: Comparison of Augmented Training Data with differ-
ent split percentages for original training data on MOT20*

Methods MOTA MOTP IDF1 IDs Recall Precision
(%) (%) (%) (%) (%)

FairMOT 71.8 81.4 76.8 2725 77.4 93.6
Ours A 72.4 81.8 77.4 2708 77.6 93.8
Ours B 72.3 80.8 76.7 2665 76.7 94.9
Ours C 71.9 80.7 76.7 2693 76.4 94.7

Table II: Performances of Multiple Objects Tracking on Vis-
Drone 2019 Dataset

Methods MOTA MOTP IDF1 FP FN
(%) (%)

SORT [15] 18.1 65.1 32.2 104,453 78,467
FairMOT 29.8 73.3 46.1 17,683 58,657
Ours 30.5 73.3 44.9 18,145 57,832

tracking experiments have been conducted using MOT20 and
Visdrone 2019-MOT dataset.

Our approach has been evaluated on some popular indica-
tors using for measuring objects tracking containing MOTA,
MOTP, IDF1, IDs [14]. MOTA measures how well the model
can track multiple objects in a scene, and MOTP measures
how closely the model can match the shape and size of
each object. IDF1 measures how accurately the model can
identify each object without confusing it with others, while
IDs measure how often the model switches the identity of
the same object. Higher values of MOTA, MOTP, and IDF1
indicate better performance, while lower values of IDs indicate
more consistent tracking.

Table I gives the comparison of MOT performance between
FairMOT as a baseline and our approach with the percentage
of data augmentation is 25%, 50% and 75% in A, B, and
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C results, respectively. The experiments have been deployed
on MOT20 validation data. Overall, our approach has shown
efficient performance when increasing the amount of training
data; especially, increasing 25% has brought the best results
with 72,4% MOTA and 81.8% MOTP. The accuracy of model
represents a decrease with higher percentages; extension of
sub-patches training data can raise the false positives leading
to affect detection and tracking performance. However, our
approach with 50% increased training data shows better keep-
tracking ability when having the lowest IDs value along with
94.9 % detection precision.

By leveraging the performance of table I, increasing 25%
training data is a chosen strategy that applies to Visdrone
2019 datasets. Note that, the performance on table II has
been collected when only considering object detection and
tracking resulting bounding boxes during the whole video. The
visualized demonstrations are still represented with multiple
categories of object tracking in Figure 3 and Figure 4. Training
dataset has been added sub-patches helped model more focus
on small objects in the crowd. This thing leads to a decreasing
amount of false negatives from 58.6k in FairMOT to 57.8k;
our approach also reaches a better MOTA value of 30.5
%. One drawback is that detecting small objects makes the
model become more confused among similar classes leading
to increasing false positive values.

Regarding qualitative results, our illustrations have been
conducted on Visdrone 2019 Dataset with the different views
and speed changes of scenarios. Each row demonstrates the
tracking results over time. We consider some important points
inside consecutive frames between two approaches: the circle
manually bounding boxes expressed the negative points for
each frame. Our approach fixed object detection at the edges
of the frame when the model has been trained with sub-patches
having more edge samples. It is shown in Figure 3 with denser
bounding boxes from various direction motions of objects. In
Figure 4, the Augmented Training Data approach still shows
improvement in tracking more tiny samples as well as objects
that just appear and are located on the border of frames. In
general, both quantitative and qualitative comparisons have
represented competitive results in the evaluation; it shows that
our method performs well in MOT tasks.

V. CONCLUSION

In this paper, we proposed an improvement method for
multiple object tracking of different categories using extended
training data. We showed how splitting large images into
smaller sub-patches and annotating them with constraints can
improve the detection and tracking of objects in various
scenarios. Besides, using historical tracklets from previous
frames to enhance embedding features brought more accu-
rately in tracking objects. We evaluated our method on the
different MOT datasets and achieved competitive results in
terms of accuracy and precision. Our method can handle
challenges such as occlusions, appearance changes, and object
interactions. Our work contributes to the advancement of MOT
applications in computer vision.
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