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Abstract—This paper presents a line tracking delivery robot 

using Wi-Fi fingerprint as an indoor positioning technology. The 

YOLOv5 model was used to detect people, such as medical 

workers and hospital patients, for this proposed line tracking 

robot. In addition, an Android app was developed to order the 

delivery and manage its status and movement. 
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I. INTRODUCTION 

 The recent outbreak of COVID-19 has highlighted the 
need for additional personnel to care for patients due to the 
shortage of healthcare workers. The issue of nursing staff 
shortages and excessive workloads have been a persistent 
concern even before the emergence of COVID-19. However, 
it has become more pronounced during the pandemic, 
significantly increasing workforce shortages [1]. In such 
circumstances, robots can play a crucial role in addressing 
hospital workforce shortages and ensuring efficient care 
delivery. By deploying robots, hospitals can decrease the 
burden on nurses, reduce their workload, and improve 
working conditions. As a result, it not only helps mitigate the 
shortage of healthcare professionals but also enhances the 
effectiveness of healthcare delivery. 

 In implementing the delivery robot, which is the subject of 
this study, indoor measurement using Wi-Fi in the hospital is 
used. By implementing YOLOv5 only detecting people, the 
robot increases the security and convenience of the delivery 
service [2]. Complex architectures and paths inside buildings 
to deliver medical charts and materials could exist. Thus, to 
identify the robot's path, line tracking, and Wi-Fi positioning 
are used in this paper. Our robot stops when it detects a human 
and resumes its operation only when the human is no longer 
in sight. Wi-Fi, commonly available in public facilities, 
provides a convenient way of determining the robot's position, 
even though its fingerprinting shows some positioning errors. 

II. RELATED WORKS 

There are multiple options available for indoor 
positionings, including Bluetooth Low Energy (BLE) and 
Wi-Fi fingerprinting. BLE and Wi-Fi are predominantly 
utilized to facilitate communication between low-power 
mobile devices. Radio Frequency (RF) positionings are 
frequently employed for indoor localization close. The Wi-Fi 
fingerprinting recognition used in this paper is an indoor 
positioning technique that utilizes the fact that the received 
signal strength (RSS) of the Wi-Fi signal varies depending on 
the location and RF channel environment. Using Wi-Fi RSS 
information requires no additional devices to estimate the 
current location [3, 4]. However, if the location is determined 

only by the existing Wi-Fi fingerprinting, a positioning error 
range of about 5 to 10 meters may occur. This paper 
introduces the advantage of combining Wi-Fi fingerprinting 
and line tracking methods to reduce positioning errors 
compared to using Wi-Fi fingerprinting alone. 

Wi-Fi-based indoor positioning can provide robot 
positions without concern for patient privacy. Hospitals are 
places where many patients and caregivers exist, 
necessitating increased care and security. Whereas camera-
based indoor positioning can lead to privacy concerns, Wi-Fi 
leverages the existing infrastructure within the ward, 
eliminating the need to consider this particular issue. 

III. PROPOSED METHODOLOGY 

A. Line Tracking 

This paper describes a line tracking robot that follows a 
given line. The robot was built with a Raspberry Pi 4B 8GB 
and an Arduino Mega. To facilitate the movement of the line 
tracking robot, a track was constructed using a black line with 
a width of 19mm. In order to detect the black line, infrared 
line sensors were utilized. The sensors emit infrared light from 
the emitter and receive the infrared light reflected from the 
floor through the receiver. In this work, the values from the 
infrared sensors were normalized to a range of 0 to 100 for 
further processing and analysis. 

Additionally, an L298N motor driver was used to control 
the DC motors. The robot was powered by a series connection 
of three 18650 3.7V lithium batteries, providing a voltage of 
11.1V. Fig. 1 shows the picture of the robot and the roadway 
implemented for the actual test. Additionally, Fig. 2 shows the 
operation procedure of the proposed hospital delivery robot. 

 

Fig. 1. Illustration of delivery robot on the line 
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Fig. 2.  Operation procedure of the proposed hospital delivery robot 

B. Indoor Position Estimation 

This paper utilizes Wi-Fi fingerprinting as the indoor 
localization method. The data used for Wi-Fi fingerprinting 
consists of online and offline data. The online data is Wi-Fi 
RSS information the robot captures as it moves to different 
locations. In contrast, the offline data contains pre-recorded 
Wi-Fi signal strength measured at specific reference locations. 
In the data preprocessing stage, a moving average filter is 
applied. The moving average filter calculates the average 
based on the past data within the specified buffer size at the 
current point. By using this filter, Wi-Fi RSS noise can be 
reduced. This can be seen with (1), where n indicates the 
buffer size. Specifically, a buffer size of 5 was selected. As a 
result, the RSS values of each reference point (RP) are 
smoothed out. 

𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊(𝒌𝒌) =  𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊(𝒌𝒌)+𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊(𝒌𝒌−𝟏𝟏)+⋯𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊(𝒌𝒌−𝒏𝒏−𝟏𝟏)
𝒏𝒏  (𝒌𝒌 ≥ 𝟏𝟏) (1) 

This paper utilized Weighted K-nearest neighbors 
(WKNN) for Wi-Fi fingerprinting. KNN is an algorithm that 
estimates the position by utilizing the average values held by 
the K nearest neighbors, while WKNN is a modified KNN 
that incorporates weights [5, 6, 7]. The weights used in 
WKNN are the inverses of the distances between the online 
Wi-Fi RSS data and the offline data of Wi-Fi fingerprints. We 

utilize the Euclidean distance shown in (2). 𝐷𝐷𝑖𝑖  is the distance 

between the 𝑅𝑅𝑅𝑅𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  of a test location and the recorded 

fingerprint 𝑅𝑅𝑅𝑅𝑆𝑆𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, where 𝑛𝑛 is the number of APS. Thus, 

we can estimate the current location by performing the 
weighted average of the known locations of K nearest 
samples. Equation (3) and (4) represent the procedure for 
calculating the weights used in WKNN. By applying (4), a 
weighted average is used to determine each coordinate. 

(2) 𝐷𝐷𝑖𝑖 = √∑ (𝑅𝑅𝑅𝑅𝑆𝑆𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅𝑆𝑆𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)2𝑛𝑛
𝑗𝑗=1   

(2) 

 𝑊𝑊𝑖𝑖 =  1
𝐷𝐷𝑖𝑖

 
(3) 

 (𝑥𝑥, 𝑦𝑦) =  
∑ 𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)𝑘𝑘

𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖

𝑘𝑘
𝑖𝑖=1

 
(4) 

In order to achieve more accurate indoor localization, we 
employed line tracking combined with Wi-Fi fingerprinting. 
For the position estimation of a robot moving on a straight line, 
we can take advantage of its linear trajectory. As shown in Fig. 
3, when using line tracking together, the positioning error can 
permanently be reduced compared to not using it. D in Fig. 3 
means Error Distance. 

 

Fig. 3. Update of the estimated robot position using line tracking and 
fingerprinting 

C. Robot Location Display App 

 It is required to know the robot's position in order to 
increase the operational effectiveness of the line tracking 
robot at the hospital. Using an Android app, a real-time map 
exhibiting the robot's position was created to address this issue. 
Because of the necessity of real-time position updates for the 
delivery robot, the position estimated through Wi-Fi 
fingerprinting was saved in the Firebase Real-time Database 
[8, 9]. The Android app retrieves these position values and 
uses them to move the robot icon on the map, allowing for 
easy tracking. It ensures efficient and reliable robot operation 
within the hospital. 

D. Real-time People Detection 

We implemented a real-time people detection system using 
a camera to halt the robot's movement when people are 
around the path. The system utilizes the Jetson Nano board to 
process real-time video and employs the YOLOv5 to detect 
people. The Jetson Nano board has a 128-core NVIDIA 
Maxwell GPU and a quad-core ARM Cortex-A57 MPCore 
processor CPU. 

For this experiment, a custom dataset was created by 
capturing images of people in the environment where object 
detection would be performed. Images were collected using 
iPhone 12 PRO and Galaxy S22 models. Furthermore, 
Roboflow's Data Augmentation tool was used to do image 
augmentation, creating about 900 augmented images. The 
dataset was trained using the Google Colab GPU 
environment, with an image size of 416x416, a batch size of 
16, and the miniature model of the existing YOLOv5. 

IV. PERFORMANCE EVALUATION 

A. YOLOv5 

 This work created a custom dataset, and the models were 
trained for 200 epochs. As a result, Model Small demonstrated 
the most suitable performance for the people detection at this 
delivery robot. Table I shows the performance of YOLOv5 by 
model. Mean Average Precision (mAP) is shown when 
Intersection Over Union (IOU) was applied from 0.5 to 0.95. 
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TABLE I.  YOLOV5 PERFORMANCE BY MODEL 

Model FPS mAP 

Small 1.3 0.76 

Medium 0.5 0.759 

Large 0.3 0.758 

 

B. Wi-Fi Fingerprinting 

Wi-Fi RSS signals were collected at each RP during the 
offline data measurement time of Wi-Fi fingerprinting. 
Meanwhile, at the online data measurement time, Wi-Fi RSS 
was measured at the moving robot and compared with the 
offline data RSS stored in the database to estimate the current 
location. The Xiaomi Redmi Note 9S Android device was 
used for RSS collection for the experiment. During offline 
progress, Wi-Fi RSS was measured with 8-second intervals 
for 2 minutes and 30 seconds, resulting in observations of an 
average of 20 RSS. As depicted in Fig. 4, considering the 
variation in location error with the number of access points 
(APs), we utilized the 11 APs with the slightest error [10]. 
Figure 5 shows that 20 RPs (blue dots) are used, and the 
distance between the RPs is 2m. The red dot symbolizes the 
test area of the robot's position at the online stage. The tests 
were conducted in the laboratory of Chosun University's IT 
Convergence College in Korea. 

 

Fig. 4. Positioning error by Number of APs 

 

Fig. 5. Position of Reference Points at the experiment area (8.8 × 7.2 m) 

In Fig. 6, the positioning errors are shown for the cases 
where Wi-Fi fingerprinting is used alone and when combined 
with line tracking. In the case of using Wi-Fi fingerprinting 
alone, the positioning error is 2.063m, while the positioning 
error is 1.189m when combined with line tracking. It shows a 
reduction in positioning error by approximately 0.874m. 

 

Fig. 6. Positioning error reduction when Wi-Fi fingerprinting is combined 
with line tracking 

V. CONCLUSION 

In the paper, we address the issue of hospital labor 
shortages and the expanding demand for robotic help. We use 
indoor positioning technology and line tracking to provide 
more stable and precise path tracking of the delivery robot. 
This paper shows that Wi-Fi fingerprinting performs better 
when combined with line tracking. The robot detects people 
on the path every 1 second and performs line tracking 
accordingly. We believe that the effectiveness of robots in 
medical facilities can be achieved by utilizing these 
frameworks and tools. 
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