
Partitioning Traffic Engineering in Software Defined
Wide Area Networks

Yufeng Xin and Yifei Wang
RENCI, University of North Carolina at Chapel Hill

Chapel Hill, NC, USA

Abstract—Traffic engineering (TE) is experiencing a surge in
research and development interests due to the rise of software-
defined networking and the massive increase in data volume
in wide area networks. State-of-the-art TE systems address
computational complexity and resiliency challenges in centralized
controllers through aggregation or partitioning of the underlying
network topology. This paper introduces a new TE load balancing
method within a novel scalable SD-WAN TE controller frame-
work that partitions traffic demands into multiple groups. Based
on an optimization formulation with bandwidth and latency
constraints, we show that effective partitioning algorithms allow
solving a set of smaller optimization problems with much reduced
computation time. Numerical analysis validates the viability of
the proposed approach and demonstrates that a small number
of traffic groups can achieve the desired TE performance.

I. INTRODUCTION

Traffic engineering (TE) has long been a visionary goal in
optimizing the performance and utilization of network oper-
ations. The traditional networks operate under the distributed
control plane and protocols, which seriously limited the wide
deployment and operation of TE systems [1].

In recent years, the emerging SDN (Software Defined
Networking) paradigm reignited the research and development
interests in TE, especially in large private Cloud wide-area
networks (WAN) such as Google Cloud [2] and Microsoft
Azure [3]. There are several main drives behind this renewed
TE campaign. The exponentially growing data traffic volume
over the WAN forced the Cloud providers to squeeze the
network capacity as much as possible while not sacrificing
the network congestion performance. The logically centralized
controller permits solving global TE optimization problems
periodically to cope with the dynamic demands and network
states. The capability to configure a large number of switches
in a short time (under a second) from the central SDN
controller is a big advantage as it allows more computation
time given to the TE solver between network re-optimization
and reconfiguration cycles.

Yet, TE optimization in large-scale operational networks
remains extremely challenging mainly because of its inher-
ently high computational complexity rooted in the multi-
commodity flow problem. The complexity of TE solutions is
proportional (exponentially) to the size of the network, the
size of the traffic matrix, and the constraints of the demands.
To address the computational complexity and the single-point-
failure problem of the centralized controller, the state-of-art
TE systems scale down the TE model either by contracting

the topology into multiple abstraction levels [4] or partitioning
the topology into multiple segments, each of which is served
by a separate SDN controller [3]. These topology abstraction
and partitioning algorithms are heuristic in nature. They also
introduce extra complexities in coordinating the routing and
traffic forwarding between the segments, including avoiding
the possible route loop and forwarding inconsistency. To
further reduce the complexity, these solutions rely on a path-
based flow maximization formulation that needs pre-computed
paths between every node pair [5]. The link interdependency
between the pre-computed paths could negatively affect the
solution quality. Furthermore, they only focused on the band-
width constraint. Other important constraints, such as latency,
are largely ignored.

In this work, we tackle the TE complexity challenges from
a different scaling dimension: partitioning the traffic demand
instead. This is primarily based on the observation that solving
the TE optimization problem with a small set of flows, even
the one with multiple constraints on big networks, can be done
very efficiently with a modern optimization solver in high-end
computers. From the SDN controller perspective, this approach
may ultimately lead to a viable TE load balancer architecture
where multiple controllers co-exist to serve different demand
groups in parallel. Such a TE load balancer system has
other appealing properties that include much simplified inter-
controller coordination and guaranteed loop-free routes. It also
enables designing customized TE policies depending on the
demand grouping strategies and the sequence of the group TE
optimization and configuration.

We present the new TE load balancing method within a
scalable SD-WAN control framework. Based on an link-based
optimization formulation with both bandwidth and latency
constraints, we show that effective partitioning algorithms
allow solving a set of smaller optimization problems to gener-
ate the desired TE results with much reduced computation
time. We studied multiple partitioning algorithms from the
NP-Hard bin packing and number partitioning problems. We
particularly studied two common TE objective functions in
link utilization and cost and looked into the uneven link
utilization phenomenon. Numerical analysis on realistic WAN
topologies and heavy traffic loads validates the viability of the
proposed approach with a small number of traffic groups.

The rest of this paper is organized as follows. We first
define the TE optimization problem with an integer linear
programming (ILP) model in Section II. In Section III, we

596979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

describe a new TE load balancer framework and present
the associated demand partition algorithms. The performance
evaluation results are presented in Section IV. We summarize
the related work in TE optimization and recent advancement
in Section V. The paper is concluded in Section VI.

II. PROBLEM FORMULATION AND OPTIMAL SOLUTION

In this section, we formally define the optimal traffic
engineering problem with node-arc based integer linear pro-
gramming (ILP) model and present a motivating example. We
explicitly add both bandwidth and latency constraints into the
formulation and consider two different objective functions.
Considering latency constraints explicitly would also prevent
solutions from the ones with very long paths.

A. Problem Formulation

A wide-area network is modeled as a bi-directional graph
G(V,E) with a set of nodes V connected by a set of links E.
Each link e(u, v) ∈ E, with its start node u and end node v,
has a set of properties such as the maximum available band-
width capacity We and the minimum transportation latency
Le. It may also carry a cost function ce.

The traffic demands are defined as a set of commodities D.
Each d(s, t) ∈ D is defined as a demand between a source
node s ∈ V and a destination node t ∈ V with bandwidth
requirement wd and a latency constraint ld. Together these
demands are represented in a traffic matrix (TM). A demand
d(s, t) is routed over a path from the node s to the node t in the
network where a binary variable xe,d is defined to represent
if the edge e is on the path d in the TE solution.

We first define the ILP model using a global load balancing
objective to minimize a utility function, as defined in (1).

minimize
|D|∑
d=1

|E|∑
e=1

wdxe,d

We
(1)

s.t.
∑
u∈V

xe(u,w),d −
∑
u∈V

xe(w,u),d = 0, ∀d(s, t), w ̸= s, t

(2)∑
u∈V

xe(u,s),d −
∑
v∈V

xe(s,v),d = −1, ∀d(s, t) (3)

∑
u∈V

xe(u,t),d −
∑
v∈V

xe(t,v),d = 1, ∀d(s, t) (4)

|D|∑
d=1

xe,dwd ≤ We, ∀e ∈ E (5)

|E|∑
e=1

xe,dLe ≤ ld, ∀d ∈ D (6)

xe,d ∈ {0, 1}, ∀e ∈ E, ∀d ∈ D (7)

Constraints (2), (3), and (4) represent the flow conservation
conditions for every flow d(s, t) from the network flow model.
Inequality (5) is the link capacity constraint for all the network
links to carry the traffic matrix D. (6) is the latency constraint

for every flow d. Finally, the integer constraint (7) represents
that this is an unsplittable flow model.

The objective function can also be defined to minimize
a global cost function in (8). This objective function may
find important applications in some operational networks
since the link cost function can be customized. For example,
certain transit network service providers need to pay for the
underneath leased lines of fibers that have monetary values
associated with the link cost. The link cost can also be defined
as proportional to a link latency property such that the overall
traffic latency can be minimized. In the most basic definition,
the link cost can be defined as one, which will lead to a
constrained shortest hop routing solution.

minimize
|D|∑
d=1

|E|∑
e=1

cexe,d (8)

This ILP model has 2|E| variables and |V | ∗ |D| + 2|E|
constraints. Typical WAN topologies have varying numbers
of nodes and links. They are normally at least 2-connected
to accommodate the failure protection and restoration require-
ment. Well-known Internet backbone network topologies that
many studies used, such as the Internet 2, GEANT, Abilene, et
al. , have a couple of dozens of nodes and relatively low link
density (around 20% comparing to a full-mesh topology) [6].
The commercial Cloud WANs may have more nodes but
similar connectivity [3]. Traffic demand volume and QoS
characteristics are critical to TE. A most recent large-scale
study concludes that Internet traffic volume follows long tail
lognormal distribution where a small number of flows demand
large bandwidth [7]. As the main purpose of TE is to make
the network adaptive to network state and traffic changes, the
TE solver needs to be invoked with new inputs repeatedly,
where the time window ranges from a few minutes to dozen(s)
minutes in the state-of-the-art system. All these factors are
considered to guide our study in this work.

The Cloud WAN operates on aggregated traffic that sup-
ports multi-path routings between a pair of Cloud sites with
complete controls. It makes more sense for them to adopt a
splittable commodity flow formulation that essentially removes
the integer constraints, enables the use of the much faster Lin-
ear Programming (LP) solution, and achieves high utilization.
Since we are more interested in benchmarking the solution
performance for general Internet backbone WANs, we assume
all the demands are unsplittable. We also add the extra latency
constraints to accommodate the QoS requirements common to
many WAN applications.

B. Optimal Solution and Traffic Load: Motivating Results

To gain more insights and motivate the main algorithmic
idea presented in this paper, we first show some optimal
solution results we obtained from solving the above TE
optimization problem with a representative network topology
and varying traffic demands.

Figure 1 shows four solution metrics of our major concern
for two network topologies of 25 and 50 nodes each and a

597

(a) Computation Time (b) Mean Utility

(c) 90 Percentile Utility (d) Utility Standard Deviation

Fig. 1: Load Balancing Optimal Solution

varying number of demands in the TM whose volumes follow
a Lognormal distribution. Figure 1 (a) shows the computa-
tional time using a state-of-the-art MIP solver. Figure 1 (b)
and Figure 1 (c) depict the mean utility and top 10% most
occupied over all the links. Figure 1 (d) shows the standard
deviation of the link utilization of all links. Unsurprisingly, the
computational time increases so fast with more demands in the
TM for the bigger network that we used up to 200 demands
in the 25-node topology and only up to 100 demands in the
50-node topology. We note that in reality part of the nodes in
a WAN are transit routers/switches that do not originate and
receive traffic. The scale of the TM we considered in the study
covers the extremely heavy traffic load situations.

The link utilization shows high variation, and part of the
links would become fully saturated, especially in the high load
scenario, while the average utilization can go beyond 60%.
Since high network utilization may directly lead to congestion
and long packet delay, the results demonstrate the value of
obtaining the optimal solution. It also implies there is plenty of
unused bandwidth in many links for less constrained demands.
Overall the result shows the importance of comparing the
detailed utilization distribution when we design and compare
different TE algorithms.

The significant gap in the computational time between the
25-node and 50-node topologies validates the viable network
partition based heuristics. It also suggests the potential to
scale down the TE solver on the other dimension: the number
of demands. When the number of demands is small, the
TE solvers can obtain the optimal solution rather fast. For
example, it only took less than 15 seconds for 10 demands
in the 25-node network and less than 150 seconds in the 50-
node network. The challenge is to identify effective grouping

algorithms to achieve overall TE goals.

III. LOAD BALANCED TE SYSTEM AND ALGORITHM
DESIGN

Our overarching goal is to develop a high-performance TE
solver for a scalable SD-WAN control software framework,
as shown in Figure 2. The left diagram depicts the targeted
control software architecture that contains a TE load balancer
and multiple TE solvers. The TE load balancer is responsible
for partitioning a given TM into groups and dispatching traffic
groups to the TE solvers for routing solutions. The routing
results will be fed to the SDN controller to form the forwarding
rules that are used to program the routers/switches in the
network substrate. The Topology Server is responsible for
providing the real-time network topology and state information
to the TE component.

�������������

��

����������� ����������� ����������� ������������

��
�
����������

���������
������

���
	
�

������������������������
������

�� �������������������������������
�����������������������
�����������

�� ���������������������������
������

 � ­��������������������������
��������

�� ������������������������������
������������������

�� ��������������������������
��������������������������������

�� �����������������������������
�
�������������������������������
��������

Fig. 2: TE Load Balanced SD-WAN Control

On the right, the proposed TE algorithm is presented in a
sketch. The first step is to sort the demands by descending
volume size. The second step partitions all the demands into
groups according to the choice of the partition algorithm. The
next step is to solve the TE optimization problem for each TE
group, either sequentially, or in parallel with different network
capacity assumptions, according to the model presented in the
previous section. In real implementation and operation, traffic
demands can be assigned to the groups using a simple hash
function, just like a typical load balancer would do.

In this paper, we focus on the TE load balancer with
effective traffic partition algorithm design and study its impacts
on the overall TE performance. Our main interest is to explore
if there exists a good grouping strategy, i.e., a sweet spot to
minimize the number of groups while maintaining the overall
TE solution quality.

The intractability of the constrained unsplittable multi-
commodity flow problem can be deduced from the well-known
due NP-Hard problems: Bin Packing (BP) and Multiway
Number Partitioning (MNP). If we treat the links in a cut
of the graph as the capacitated bins, all the flows between the
cut links can be treated as the items to fit into the bins. We
can also try to partition these flows as evenly as possible just
as what the MNP problem aims to solve.

There exists abundant effective heuristics and approximate
algorithms for both BP and MNP problems [8], [9]. Given the
multi-commodity nature of the TE problem, we focus on the
offline algorithms that give better approximate ratios than the
online heuristics.

598

There are three key steps shared by the representative offline
approximate algorithms: sorting, partitioning, and series of
TE optimization. The sorting by descending size corresponds
to considering the flows of larger volumes first, which is
intuitively beneficial to good TE solutions. The motivation
for grouping items is to reduce the number of items and the
number of different item sizes, which leads to less number of
constraints and potentially good approximate ratios.

In this study, we designed three partitioning algorithms. We
assume the number of partitions is k > 0.

1) Linear Partition. The sorted demands are evenly di-
vided into k groups, each of which has at most |D|

k
items.

2) Geometric Partition. It proceeds in dividing the sorted
demands into k groups such that the ith group is as-
signed with the demands whose bandwidth requirements
fall into the range [B ∗ |D|/2i+1, B ∗ |D|/2i)], where B
is the minimum bandwidth requirement presented in D.

3) k-way Partition. All the demands are assigned to k
groups so that the sum of the bandwidth requirements
of all demands in each group is as even as possible. Here
we use the efficient exact Karmarkar-Karp algorithm for
the MNP problem [9].

After the groups are formed, the load balanced TE opti-
mization shown in Figure 2 can be conducted in a parallel or
even an asynchronous fashion, in which a TE solver can solve
a much smaller TE optimization problem at different time
scales with dynamic traffic arrival patterns. However, since
all the servers work on the same network topology, there is an
extra challenge to provide a differentiated capacitated network
model to different TE servers that take the TE interdependency
between the different traffic groups into consideration. On the
other hand, a sequential of k optimization problems can be
solved in a centralized fashion.

IV. EXPERIMENTS AND EVALUATION

We evaluate the performance of the TE load balancer
with different partitioning algorithms on a couple of meshed
topologies and different traffic loads. We implement an ILP op-
timization solver for our TE model using the powerful Google
OR-Tools in Python with the SCIP MIP optimizer [10]. The
solver is implemented in Python 3.8 and all the experiments
were conducted in Longleaf cluster, a Linux based computing
cluster at the University of North Carolina at Chapel Hill. The
servers in the cluster are equipped with 2.3 − 2.5GHz Intel
processors, 24.75− 30M cache, and 256− 754GB RAM.

A. Network Topology and Traffic Matrix

We use the Erdős–Rényi model with edge probability p =
0.2 to generate random graphs in our performance study that
mimic the scale of the well-known Internet backbone network
topologies [6]. We made sure the generated graph is at least
2-connected. Figure 3a shows such a random topology of 25
nodes used in the study. To further emulate an operational
network, we randomly assign the available bandwidth capac-
ity for each link from the range [5000Mbps, 10000Mbps].

Each link is also assigned a random latency from the range
[10ms, 25ms].

As we discussed earlier, we use the LogNormal distribu-
tion to generate the demanded bandwidth for the demands
in the traffic matrix. Specifically, we used the parameters
µ = 750Mbps and δ = 0.5. Figure 3b shows the PDF of the
distribution. Each demand is also assigned a random latency
requirement.

(a) Topology (N=25, p=0.2) (b) PDF of the Traffic Demands

Fig. 3: Network Topology and Traffic Matrix

B. Load balancing

We already showed the optimization solutions in Figure 1
in the previous section. Figure 4 shows the performance for
the high load of 200 demands under different partitioning
algorithms with the same load balancing objective. We note,
after each TE optimization step, the network state is updated
before the next step in the optimization sequence until the
final group is finished or no optimization solution is found.
The partitioning group size ranges from 2 to 20.

Among the three partitioning algorithms, Geometric Parti-
tion outperforms the others significantly. It is the only one
that can find the optimal solutions for all the group numbers.
The other two schemes fail to find feasible solutions after the
number of groups is greater than 4. Secondly, for Geometric
Partition, eight appears to be the sweet spot group number.
The computational time sharply dropped and then flattened
out with eight groups. The computation time from the other
two schemes is lower mainly because they failed to find a
feasible solution for the last few groups and stopped early. In
terms of utilization performance, the mean utilization increases
with more groups as expected. However, it maxes out at eight
groups. Compared to the global optimal solution, the increase
is mild. At the same time, the 90% utility remains close to
100%. The utilization standard deviation dropped some and
maxed out at eight groups too.

To further illustrate the performance of these algorithms, we
show the results with 100 demands in Figure 5. All the 100
demands are drawn from the same traffic volume distribution.
With the reduced traffic load, the k-way Partition also reaches
the feasible solution while the linear partitioning stops after 10
groups. Again eight is the best group number for both feasible
algorithms. The k-way partition outperforms the Geometric
Partition marginally in both computational time and utilization
metrics.

599

(a) Computation Time (b) Mean Utility

(c) 90 Percentile Utility (d) Utility Standard Deviation

Fig. 4: Load Balancing Heuristic Solution (N= 25, 200 Demands)

(a) Computation Time (b) Mean Utility

(c) 90 Percentile Utility (d) Utility Standard Deviation

Fig. 5: Load Balancing Heuristic Solution (N= 25, 100 Demands)

C. Minimizing Cost

Minimum cost is one of the fundamental objective functions
for the general multi-commodity flow problem. In Section II,
we explained several use cases with a minimum cost objective
function in operational networks. In Figure 6, we show the
numerical results with the Expression (8) as the objective
function. Due to the page limit, we only show the results with
200 demands in the 25-node topology.

Compared with the model using the load balancing objective
function, the minimum cost model incurs much less computa-

tion time for the optimal solution and therefore the partitioning
based heuristics. However, when the number of groups exceeds
four, all three partitioning schemes failed to find a feasible
solution for the last one or two groups. This result with the
high traffic load is not completely surprising as the demands
are not as spreading as the load balancing model. As a result,
we can see that the mean utilization is higher and there are
more saturated links. Among the three partitioning algorithms,
the k-way Partition and Geometric Partition perform the same
while the Linear Partition causes higher utilization and higher
cost. For more groups, since only the last one or a few groups
fail to obtain a feasible solution, the partial solution is still
very useful to satisfy the majority of the traffic demands.

(a) Computation Time (b) Mean Utility

(c) 90 Percentile Utility (d) Utility Standard Deviation

Fig. 6: Minimum Cost Solution (N= 25, 200 Demands)

V. RELATED WORK

There are two representative TE implementations in tradi-
tional networks operated under the distributed control plane
and protocols: IP network TE and MPLS TE. The IP net-
work TE manipulates the IP link weights to influence the
results of the routing protocols, like the IGP protocols like
OSPF or IS-IS [11]. The MPLS network enables explicit TE
by establishing end-to-end rate-limited tunnels through label
switching protocols [12]. The challenges include the far-from-
optimal network utilization and slow routing converges in IP
networks and the high cost and operational complexity in
MPLS networks [1]. They rely on the constrained shortest
path (CSP) algorithms to find the routing solution [13]. CSP
optimization problem itself is NP-complete and leads the
development of several heuristics based on shortest path or
k-shortest path algorithms [14].

The logically centralized controller and separation of control
plane and forwarding plane in SDN make the global TE op-
timization possible for an entire traffic matrix. The TE solver

600

has become a core function in large private Cloud SD-WAN
(Software Defined WAN) control software [2], [15]. As the
traffic matrix and network states may be highly dynamic, these
systems run TE re-optimization periodically, at a frequency
ranging from three minutes to fifteen minutes.

Computational complexity and operational complexity are
the critical factors behind the TE solutions. The fundamental
optimization problem behind TE is the multi-commodity flow
problem. It becomes a popular choice to use a path-based
formulation rather than the link based formulation to reduce
the number of variables in the model. These solutions pre-
compute a set of paths (tunnels) between every pair of source-
destination nodes and allow traffic splitting among paths [16],
[17]. Apparently, the impact of path computation on the TE
performance is profound but can only be evaluated experimen-
tally.

To further reduce the computational complexity, one com-
mon option is to scale down topology size either by contracting
the topology into multiple abstraction levels [4] or partitioning
the topology into multiple segments [3]. TE solutions have also
been extended to include the network availability to make sure
enough network capacity is reserved to achieve congestion free
under network failures [18]. More details on the state-of-art
TE sysems can be found in a recent comprehensive review
paper [5].

Most recent TE solutions focus on the layer-3 networks with
a goal to maximize the splittable traffic flows under the link
capacity and TM constraints. For commercial WAN ISP and
the research and educational (R&E) networks, provisioning
on-demand QoS-guaranteed layer-2 or MPLS connections is
a important service. Unfortunately this would add the integer
constraints on the unsplittable flows, which leads to an even
harder integer linear programming (ILP) problem formulation.
However, such kinds of demands are not as dynamic so a less
frequent optimization cycle is needed.

Depending on the types of the objective functions and
constraints, there are many variants with vastly different com-
putational complexities. The optimization objective functions
could be minimizing the total cost, maximizing the total
flows, or minimizing the network utilizations, which may have
different performance implications on the TE metrics [19].

VI. CONCLUSIONS

This paper presents the algorithmic design and performance
evaluation of a scalable traffic engineering load balancing
solution for the software defined WAN. We model the TE
problem with a MIP formulation under different objective
functions and both bandwidth and latency constraints on the
demands. We studied the computational time and the network
utilization distribution performance, including the mean, 90%,
and standard deviation, of the global optimal and our pro-
posed traffic partition based solutions. The results show that
there exists a viable traffic partition strategy that achieves a
good tradeoff between the TE performance and computational
complexity under realistic backbone network scale and traffic
demand distribution.

Compared to the existing path and topology slicing based
solutions, our proposed traffic partition scheme not only
provides good scalable TE solution quality, but also avoids
the extra complexities in managing the abstracted topology
and routing operations. For future work, we will extend the
performance study to networks of larger size and different
topological characteristics. We will further explore more ef-
fective parallelization methods for TE optimization.

ACKNOWLEDGMENTS

This work is funded by US NSF award OAC-2029278.

REFERENCES CITED

[1] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in sdn-openflow networks,” Comput. Netw., vol. 71,
oct 2014.

[2] B4 and after: Managing Hierarchy, Partitioning, and Asymmetry for
Availability and Scale in Google’s Software-Defined WAN. ACM, 2018.

[3] U. Krishnaswamy, R. Singh, N. Bjørner, and H. Raj, “Decentralized
cloud wide-area network traffic engineering with BLASTSHIELD,” in
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22). Renton, WA: USENIX Association, Apr. 2022.

[4] F. Abuzaid, S. Kandula, B. Arzani, I. Menache, M. Zaharia, and P. Bailis,
“Contracting wide-area network topologies to solve flow problems
quickly,” in 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association, Apr. 2021.

[5] R. Singh, N. Bjørner, and U. Krishnaswamy, “Traffic engineering: from
isp to cloud wide area networks,” in Proceedings of the Symposium on
SDN Research, 2022, pp. 50–58.

[6] P. Kumar, C. Yu, Y. Yuan, N. Foster, R. Kleinberg, and R. Soulé, “Yates:
Rapid prototyping for traffic engineering systems,” in Proceedings of the
Symposium on SDN Research, ser. SOSR ’18. New York, NY, USA:
Association for Computing Machinery, 2018.

[7] M. Alasmar, R. Clegg, N. Zakhleniuk, and G. Parisis, “Internet traffic
volumes are not gaussian—they are log-normal: An 18-year longitudinal
study with implications for modelling and prediction,” IEEE/ACM
Transactions on Networking, vol. 29, no. 3, 2021.

[8] N. Karmarkar and R. M. Karp, “An efficient approximation scheme for
the one-dimensional bin-packing problem,” in 23rd Annual Symposium
on Foundations of Computer Science (sfcs 1982), 1982.

[9] N. Karmarker and R. M. Karp, “The differencing method of set par-
titioning,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/CSD-83-113, 1983.

[10] “Google or-tools,” https://developers.google.com/optimization.
[11] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional

ip routing protocols,” IEEE Communications Magazine, vol. 40, no. 10,
2002.

[12] G. Swallow, “Mpls advantages for traffic engineering,” IEEE Commu-
nications Magazine, vol. 37, no. 12, 1999.

[13] S. Balon, J. Lepropre, O. Delcourt, F. Skivee, and G. Leduc, “Traffic
engineering an operational network with the totem toolbox,” IEEE
Transactions on Network and Service Management, vol. 4, no. 1, 2007.

[14] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast qos
routing algorithms for sdn: A comprehensive survey and performance
evaluation,” IEEE Communications Surveys and Tutorials, vol. 20, no. 1,
2018.

[15] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, aug 2013.

[16] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in
software defined networks,” in Proceedings IEEE INFOCOM, 2013.

[17] E. Danna, S. Mandal, and A. Singh, “A practical algorithm for balancing
the max-min fairness and throughput objectives in traffic engineering,”
in Proceedings IEEE INFOCOM. IEEE, 2012.

[18] J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjørner, A. Valadarsky,
and M. Schapira, “Teavar: striking the right utilization-availability
balance in wan traffic engineering,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 29–43.

[19] F. Boavida, T. Plagemann, B. Stiller, C. Westphal, and E. Monteiro,
Eds., How Well Do Traffic Engineering Objective Functions Meet TE
Requirements? Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

601

