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Abstract—The intelligent reflecting surface (IRS), a planar ar-
ray consisting of many low-cost configurable reflecting elements,
offers many new possibilities, such as creating a virtual line of
sight, interference cancellation, wireless power transfer, etc. To
efficiently achieve these goals, the real-time reconfiguration of
its elements, which is still challenging, needs to be as simple
as possible. Prior works for downlink IRS-aided multi-user
multiple-input single-output (MISO) systems, which are noted to
have high complexity, are extended in this work by incorporating
them with novel techniques that lower their complexity. In
doing so, we create a weighted sum rate problem and adopt
a reduced weighted minimum mean square error (RWMMSE)
algorithm, which is an advanced low-complexity version of the
weighted minimum mean square error (WMMSE) scheme to
optimize the active precoders, whereas a gradient projection
(GP) algorithm, whose procedure of choosing the step size is
redesigned to avoid the high-complexity iterative processes, is
adopted for optimization of passive beamformers. Finally, the
presented numerical results demonstrate the effectiveness of our
proposed scheme in attaining comparable performance to the
benchmark schemes with a significant complexity reduction.

Index Terms—Intelligent reflecting surface (IRS), multiple-
input single-output (MISO), passive beamforming, active beam-
forming, reduced WMMSE (RWMMSE).

I. INTRODUCTION

THE WIRELESS channel has been used for years as a
medium for transmitting and receiving electromagnetic

waves. Apart from its advantages and flexibilities over its
counterpart, the wired medium, it also has several issues, such
as fading, scattering, and shadowing [1], [2], which make
transmitting and receiving the signals challenging. Moreover,
its free-propagation nature not only makes the transmitted
information vulnerable to eavesdropping, hence raising some
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security issues [2], [3], but also allows the transmitted signals
to add together either constructively or destructively, thus
making interference another bottleneck even within the same
network operator.

Multiple-input multiple-output (MIMO) [4], [5], cell-free
massive MIMO [6], [7], and ultra-dense networks (UDN) [8],
[9] are among the few solutions that have been proposed
to tackle the aforementioned issues. Although most of these
solutions provide great relief to the challenges above, they are
only channel-adaptive techniques, i.e., they work based on the
nature of the current channel conditions.

In an effort to gain more control over the conditions of
the wireless channel, scholars and industry developed artifi-
cial metamaterials [10], whose primary characteristic is the
ability to be reconfigured in real-time. This property, when
exploited by several metamaterial-derived technologies such as
intelligent transmitting surfaces (ITS) [11], intelligent reflect-
ing surfaces (IRS) [10], and dynamic metasurface antennas
(DMA) [12], [13], can offer great flexibility on how to deal
with various wireless channel conditions.

Interestingly, these technologies can be amalgamated with
several others to create various combinations [11], [13], [14]
that best serve a specific desired goal. Although several combi-
nations exist, the most popular one is between IRS and systems
with multiple antennas because of their various use cases, like
improving spectral efficiency, facilitating interference cancel-
lation, supporting secure communication [15], and assisting
in simultaneous wireless information and power transfer [16].
Specifically, this work focuses on the IRS-aided downlink
multi-user (MU) multiple-input single-output (MISO) system.

In a nutshell, IRS is a planar surface consisting of a large
number of nearly passive reflecting metamaterial elements,
which are usually sub-wavelength-spaced. In its common
usage, it is normally deployed by being plated on the surfaces
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of user-surrounding structures like building facades, ceilings,
furniture, etc., and near the receiver to facilitate the trans-
mission and reception of the signals in a controlled manner
[14]. When used with MIMO, this system presents a highly
non-convex problem, i.e., the joint optimization of active and
passive beamformers, which needs to be efficiently addressed
in order to achieve its full potential. Some previous works
like [17], [18] proposed notable techniques for solving this
problem; however, the mechanics of most of these techniques
accumulate a lot of computation complexity along the way.

The work [17], for example, solved the weighted sum
rate (WSR) maximization problem for the IRS-aided MU
downlink MISO system by alternatively deploying a weighted
minimum mean square error (WMMSE) [19] algorithm to
find the active precoders at the base station (BS) and either
a Manifold optimization (MO) or block coordinate descent
(BCD) method to solve for the IRS’ passive beamformer.
Although it is appreciatively noted that these techniques jointly
offer remarkable performance in terms of the achieved WSR,
their accrued complexity, which unfortunately scales with the
number of BS transmit antennas, is prohibitively high.

To reduce complexity, the work [20] adopted gradient
projection (GP) and cross-entropy (CE) to solve a similar
IRS phase shift optimization problem for downlink MISO
systems but with a different objective, i.e., spectral efficiency
(SE) maximization of the user. While GP is essentially a
gradient descent scheme, which needs, at every point, to
decide the direction and step size to descend towards a global
minimum, CE resembles a genetic ant colony algorithm that
depends on many parameters to kickstart and continue with its
optimization process. Although the internal structure of GP is
simpler compared to that of CE, both approaches still have
high complexity for practical systems.

Contributions: Due to the high complexity of these ex-
isting schemes, in this paper, we extend the prior efforts
of using WMMSE and GP to alternately optimize the BS’
precoders (active beamformers) and IRS’ phase shifts (passive
beamformers) of the IRS-aided MU downlink MISO system.
Specifically, we propose using the RWMSSE algorithm [21]
for optimizing active beamformers and the GP algorithm for
optimizing passive beamformers.

Notations: Throughout this paper, C denotes the complex
domain. A bold-face capital letter, X , is used to denote a
matrix, a bold-face lower-case letter, x, denotes a vector, and
a lower-case italic letter, x, denotes a scalar. The superscripts
T , H , and ∗ denote the transpose, conjugate transpose, and the
complex conjugate, respectively. We use X−1 and Tr (X) to
denote the inverse and trace of the matrix X , respectively.
The magnitude of the complex number x is denoted by |x|,
whereas its argument is denoted as arg(x). For any vector x,
[x]i is the i-th element of x; |x| and ∥x∥ denote its absolute
value and Euclidean norm, respectively. diag(a1, · · · , aN ) is
an N × N diagonal matrix containing a1, · · · , aN as its
diagonal elements.

G

IRS

BS

K Users

hd,1

hd,k
hr,k

hr,1

Fig. 1: System model

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 shows a communication system considered in this
work, where a BS equipped with M transmit antennas trans-
mits K streams of data signals with transmit power P to
K single-antenna users. This transmission is assisted by an
IRS equipped with N reflecting elements arranged on a
planar surface. The signal reaches the users through a set of
baseband channels, which are all assumed to be flat-fading
and known to the BS. Particularly, we denote the link between
BS and IRS as G ∈ CN×M , the reflected link between IRS
and user k as hr,k ∈ CN×1, and the direct link between
BS and user k as hd,k ∈ CM×1. Moreover, the reflection
coefficients of all IRS elements are arranged in a diagonal
matrix Θ = diag

(
ejθ1 , ejθ2 , · · · , ejθN

)
∈ CN×N , where θi

is the phase shift of the i-th element. Prior to transmission,
all the unit-power symbols s1, s2, · · · , sK , where si is the
symbol intended for user i, are precoded with their respective
precoders (f1,f2, · · · ,fK) ∈ CM×1, and added together to
form a transmitted signal:

d =
K∑

k=1

fksk. (1)

Then, the received signal yk at user k is given by

yk =
(
hT
d,k + hT

r,kΘG
)
d+ zk, (2)

where zk is additive complex white Gaussian noise with
zero mean and variance σ2. Let hk = hT

d,k + θTEk,
denote the composite channel comprising of both the di-
rect and reflect links between BS and user k, where θ =[
ejθ1 , ejθ2 , · · · , ejθN

]T ∈ CN×1 is the vectorized collection
of IRS reflection coefficients and Ek = diag (hr,k)G ∈
CN×M is used to exchange the shapes and positions of the
variables hr,k and Θ. With this transformation, the signal-
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to-interference-plus-noise ratio (SINR) for user k can be
compactly expressed as

SINRk =
|hkfk|2∑K

i̸=k |hkf i|2 + σ2
. (3)

Note that the presence of interference in (3) normally com-
plicates the analysis of such systems. Alternatively, the WSR,
which for our case is given by

R (F ,θ) =
K∑

k=1

ωk log2 (1 + SINRk) , (4)

where F = [f1,f2, · · · ,fK ] ∈ CM×K and ωk denotes the
priority of user k, has been used successfully to deal with
communication systems of this nature. In this work, we aim to
find θ and F that maximize the system’s WSR. This problem
is given by

P(A) : max
F ,θ

R (F ,θ) (5a)

s.t. |[θ]ℓ| = 1 ∀ℓ = 1, 2, · · · , N, (5b)
K∑

k=1

∥fk∥2 ≤ P. (5c)

We notice that the objective function of P(A) is non-convex
with respect to θ due to its unit modulus constraint on each
element. Therefore, designing a global optimal algorithm to
solve P(A) is challenging. In the next section, we propose an
efficient algorithm that generates a locally optimal solution to
P(A).

III. PROPOSED SOLUTION TO PROBLEM P(A)

Apart from the non-convexity of P(A), the deep coupling
of F and θ makes the problem even harder to solve. Notably,
AO is very efficient in solving these kinds of problems by
alternatively fixing one parameter and optimizing the other
in a repetitive manner until the objective function converges.
Therefore, in this work, we adopt the same technique AO,
where at each turn, when one optimization variable is fixed,
we create and propose a solution to a subproblem of the other
variable.

A. Optimization of Active Precoding

When θ is fixed, a prior work [17] solved the resulting
problem P(B) by using WMMSE technique [19].

P(B) : max
F

R1 (F ,θ) (6a)

s.t.
K∑

k=1

∥fk∥2 ≤ P. (6b)

We note that this approach ends up having very high com-
plexity as it needs to repetitively compute the inverse of a
high-dimensional matrix and iteratively find the Lagrangian
power constraint. To reduce this complexity, we adopt and
present the RWMMSE technique in this subsection. A great
detail of RWMMSE is given in [21]; however, for the sake
of convenience, we briefly touch on some of its important

concepts as we explain the solution to this subproblem. To

begin, we define H =
[
hT
1 ,h

T
2 , · · · ,h

T
K

]T
∈ CK×M to be a

collection of composite channels from all users to the BS. The
key idea of RWMMSE lies in two novel observations of the
nontrivial stationary points. The first observation is that any
nontrivial stationary point f⋆

k, which does not result in a zero
WSR, must satisfy f⋆

k = HHxk for some xk ∈ CK×1. This
immediately transforms P(B) to

max
X

K∑
k=1

ωk log2

(
1 +

|hkH
Hxk|2∑K

i̸=k |hkH
Hxi|2 + σ2

)
(7a)

s.t.

K∑
k=1

∥HHxk∥2 ≤ P, (7b)

where X = [x1,x2, · · · ,xK ] ∈ CK×K . This shows that
P(B) can be solved by equivalently solving (7). Notice
that problem (7) has now much-reduced dimensions on the
optimizable parameter X than that of F . Nevertheless, this
problem is still computationally expensive if WMMSE is
applied because of the power constraint (7b), which needs an
iterative line search process for its computation. This brings
us to the second observation, which helps to circumvent this
constraint; i.e., any nontrivial stationary point of P(B) must
satisfy the power constraint (6b) with equality. Using this
observation, we obtain the following unconstrained problem

max
X

K∑
k=1

ωk log2

(
1 +

∣∣h̄kxk

∣∣2
ak

)
, (8)

with the necessary modification of the relationship between
f⋆
k and xk given as f⋆

k =
√
βHHxk, where ak =∑K

j ̸=k

∣∣h̄kxj

∣∣2 +
σ2
k

P

∑K
i=1 Tr

(
H̄xix

H
i

)
is used to simplify

the notations, H̄ = HHH ∈ CK×K , h̄k = hkH
H ∈ C1×K ,

and β = P∑K
K=1 Tr(H̄xkxH

k )
is the scaling factor. To solve

(8) we adopt its equivalent unconstrained weighted sum-mean
square error (MSE) problem P(C):

P(C) : min
uk,χk,X

K∑
k=1

ωk

(
χk

∣∣1− u∗
kh̄kxk

∣∣2

+ χk |uk|2 ak − log2 χk

)
, (9)

which is obtained by introducing two auxiliary variables u and
χ, whose closed-form solutions obtained by the BCD method
are given by

uk =
h̄kxk

ak +
∣∣h̄kxk

∣∣2 . (10)

χk =
1

1− u∗
kh̄kxk

. (11)
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Similarly, the update rule for X , which is also in a closed-
form and given in (12), is obtained by solving P(C) when the
blocks u and χ are fixed.

xk = ωkχkuk


K
i=1

σ2
i

P
ωiχi |ui|2 H̄

+

K
j=1

ωjχj |uj |2 h̄
H
j h̄j

−1

h̄
H
k . (12)

This process of finding the active beamformers is summarized
in Algorithm 1. The algorithm starts by initializing the matrix
X such that when applied to the system the total transmit
power is not exceeded. Then, the auxiliary variables together
with the xk, ∀k are iteratively updated by their corresponding
update rules until the objective function converges, upon which
the active beamformers are obtained by fk =

√
βHHxk.

Algorithm 1: RWMMSE method to generate F

Input : X , H , and ωk, ∀k
1 Initialization: Generate H̄ = HHH .
2 Set χk = 1
3 repeat
4 χ

′

k = χk

5 Update uk, ∀k by (10).
6 Update χk , ∀k by (11).
7 Update xk , ∀k by (12).

8 until
K

j=1 ωk logχk −
K

j=1 ωk logχ
′

k

 ≤ ϵf

Output: X and fk =
√
βHHxk, ∀k such thatK

k=1 ∥fk∥2 ≤ P

B. Passive precoding

Next, we fix the active precoder F and optimize the passive
precoder θ. The fixation of F transforms P(A) into

P(D) : max
θ

f (θ) (13)

s.t. |[θ]ℓ| = 1 ∀ℓ = 1, 2, · · · , N, (14)

where

f(θ) =

K
k=1

ωklog2


1 +

θHe∗k,k + r∗k,k


2

K
i̸=k

θHe∗k,i + r∗k,i


2

+ σ2


 (15)

is the single-variable objective function with ek,i = Ekf i

and rk,i = hT
d,kf i. It is noted that P(D) is continuous and

differentiable, thus it has attracted several gradient descent-
based approaches for its optimization. In this study, we extend
GP to the MU system and enhance it with robust procedures
for choices of step sizes at each iteration.

The GP is basically a gradient descent method, in which
at every given point θi of iteration i, a search direction ρi

is computed, and then we decide how far to move along

that direction to obtain the next point θi+1. This can be
mathematically represented as

θi+1 = θi + αiρi,

where αi > 0 is called the step-size. While the search direction
at each point is easily obtained by the negative of the gradient
of the objective function at that particular point, which in our
case is given by ρi = −∇f(θi)1 = −2

K
k=1 ωkgk(θ

i) with

gk(θ) =

K
i=1 e

∗
k,ie

T
k,iθ +

K
i=1 e

∗
k,irk,i

K
i=1

θHe∗k,i + r∗k,i


2

+ σ2

−
K

i̸=k e
∗
k,ie

T
k,iθ +

K
i̸=k e

∗
k,irk,i

K
i̸=k

θHe∗k,i + r∗k,i


2

+ σ2

being the Euclidean gradient; the search of optimal αi is usu-
ally very challenging. The work [20] proposes a procedure that
involves the computation of the maximum eigenvalue λmax of
a high-order matrix EkE

H
k ∈ CN×N , which apart from being

computationally expensive on its own, the extension to the
MU system is even harder as it needs to compute λmax for
each user. To avoid this problem we adopt a two-point step
size method, which is given as follows [22]

αi =


1

c∥∇f(θi)∥ , if i = 0

υiHξi

∥ξi∥ , otherwise
(16)

where ξi = ∇f(θi) − ∇f(θi−1), υi = θi − θi−1, and c ∈
(0, 1) is a scaling constant. The proposed GP method to solve
P(D) is summarized in Algorithm 2.

Algorithm 2: GP-based method for solving P (D)

Input : θ, F , Ek, ωk, ∀k
1 Set i = 0 and θi = θ.
2 repeat
3 Compute ∇f(θi).
4 Generate αi by using (16).
5 ϖ ← θi − αi∇f(θi)

6 θi+1 ← ejarg(ϖ)

7 i ← i+ 1

8 until
f(θi)− f(θi−1)

 ≤ ϵθ
Output: θ

The complete algorithm, which is henceforth referred to as
“RWMMSE-GP”, is presented in Algorithm 3.

IV. SIMULATION RESULTS

In this section, we present the numerical results of our
proposed algorithm. We compare its effectiveness with the
benchmark schemes BCD and WMMSE-MO [17]. It should be
noted that contrary to RWMMSE-GP, which uses RWMMSE

1Note that the gradient is computed using the natural logarithm version of
(15) because of its analytical simplicity and the independency of the solution
form the base of the logarithm.
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Algorithm 3: Proposed RWMMSE-GP scheme
Input : G, hd,k, hr,k, ωk, ∀k ∈ [1, 2, · · · ,K]

1 Initialization: Randomly generate θ and X such that∑K
j=1 Tr(H̄xjx

H
j ) ≤ P .

2 Set j = 0.
3 Calculate WSR, Cj .
4 repeat
5 Update θ by Algorithm 2.
6 Update F by Algorithm 1.
7 j ← j + 1
8 Calculate WSR, Cj .
9 until

∣∣Cj − Cj−1
∣∣ ≤ ϵC

Output: θ, F

and GP schemes to optimize the active and passive beamform-
ers, the benchmark scheme WMMSE-MO uses the WMMSE
and MO algorithms for the optimization of active and passive
beamformers, respectively. We also include the performance
of the random phase scheme, which randomly chooses the
phases of the IRS, and the unassisted system (without IRS) to
act as the performance lower bounds.

A. Simulation Settings

We adopt nearly similar simulation environments to those
adopted in [17]. Unless otherwise stated, we consider a system
in which a BS equipped with M = 8 antennas and located
at (0, 0) is used to serve K = 4 single-antenna users,
which are located at (205.65m, 34.48m), (193.47m, 30.24m),
(198.30m, 22.40m), and (206.00m, 24.28m). This commu-
nication is assisted by an IRS located at (200 m, 0). The
channels G, hd,k, and hr,k are generated using mmWave
clustered channel model [23] and then multiplied by the square
root of the large-scale fading which is given by

PL (∂, η) [dB] =

{
35.6 + 10η log (∂) , LoS case
32.6 + 10η log (∂) , NLoS case,

(17)

where ∂ is the distance in meters between BS and the user, and
η denotes the path-loss exponent, which is given as η = 2.2
and η = 3.67 for LoS and NLoS cases, respectively. The
inverse of the path-loss of the link between BS and each user is
used as the priority of the corresponding user. These priorities
are further normalized such that

∑K
k=1 ωk = 1. Finally, the

transmit power at the BS is set to 20 dBm, the noise power
at the user’s receiver is set to σ2 = −170 dBm/Hz, and the
transmission bandwidth is set to 180 kHz. Control parameters
of the proposed algorithm are set as follows ϵθ = ϵC = ϵf =
10−5 and c = 1

6 .

B. WSR Versus the Number IRS elements:

We start by presenting in Fig. 2 the achievable WSR for
various sizes of IRS. It is quickly noted that the proposed
scheme, BCD, and WMMSE-MO all exhibit the expected
behavior of performance improvement as the size of the IRS
increases. In addition, it is also seen that the performance

50 100 150 200 250 300

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

RWMMSE-GP

WMMSE-MO

BCD

Random phase

No IRS

Fig. 2: WSR vs. N for K = 4, M = 8, and P = 20 dBm.

of the proposed scheme is almost the same as that of the
benchmark schemes. As the size of the IRS increases, our pro-
posed scheme performs marginally better than the benchmark
schemes. This clearly demonstrates the effectiveness of our
proposed scheme in attaining better performance with reduced
complexity. Furthermore, we note from Fig. 2 that the perfor-
mance of the randomly configured IRS-aided system is almost
the same as that of the unassisted system. This observation
highlights the necessity of a proper IRS configuration to reap
its benefits fully.

50 100 150 200 250 300

10
-1

10
0

10
1

10
2

RWMMSE-GP

WMMSE-MO

BCD

Fig. 3: Runtime vs. N for K = 4, M = 8, and P = 20 dBm.

C. Complexity comparison:

Next, we examine the accrued complexity of both the
proposed and the benchmark schemes to produce the results
in Fig. 2. This complexity, which is presented in Fig. 3 in
terms of the running time versus the number of IRS elements,
is obtained from a MATLAB R2023a running on a Windows
10 computer having a 12th Gen Intel(R) Core(TM) i7-12700
CPU @ 2.10 GHz processor and 32 GB of RAM. As expected,
the running times of all schemes are observed to increase as
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the size of the IRS increases. This is due to the increased
computational processing in configuring the phase of each
IRS element. Apart from that, we note from Fig. 3 that the
proposed scheme attains the shortest running time for all
sizes of the IRS. Quantitatively, note that when N = 50,
the running times of the proposed scheme and that of BCD
are 0.07 seconds and 0.34 seconds, respectively. Moreover, as
N increases to 300, the corresponding running times of the
proposed scheme and the BCD algorithm are 15.89 seconds
and 72.53 seconds, respectively. This reduction in running time
is attributed to the faster convergence of the proposed scheme.

V. CONCLUSION

This work investigated one potential way of reducing the
complexity for optimization of the IRS phase shifts (passive
beamformer) and transmit precoders (active beamformers)
of the IRS-aided MISO systems. We formulated the WSR
problem and adopted an AO scheme to decouple the optimiz-
able parameters, i.e., passive and active beamformers, which
are, after that, alternately optimized by complexity-efficient
techniques. Specifically, the RWMMSE algorithm that reduces
the size of the invertible matrices, avoids iterative processes,
and circumvents the Lagrangian power constraint is adopted
for active beamformer optimization. On the other hand, the
passive beamformer is optimized by a GP algorithm that is
enhanced with a BB step-size selection. Simulation results
demonstrated the effectiveness of the proposed algorithm in
attaining nearly the same performance as the benchmark
scheme with a significant complexity reduction.
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