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Abstract—Intelligent reflecting surface (IRS) has emerged as a
promising solution for future networks in improving the coverage
and spectral efficiency by adapting its reflection pattern to the
channel environments. To enable this, it is essential to acquire
channel state information for which deep learning networks have
been popularly applied recently. In this paper, we apply and
optimize a deep denoising network to estimate the IRS-cascaded
frequency selective fading channel with a reduced reflection
pilot pattern for an IRS-enhanced orthogonal frequency division
multiplexing system. The proposed network designed to support
various noise levels with a single network model is shown to
provide a reasonably good channel extrapolation performance
when compared with the benchmark networks optimized for each
noise level.

Index Terms—Channel estimation, deep learning, intelligent
reflecting surface, orthogonal frequency division multiplexing

I. INTRODUCTION

Intelligent reflecting surfaces (IRSs) have drawn significant
attention as a key technology for next-generation networks
since it can boost spectral and energy efficiency while re-
solving signal blockage problems [1]. An IRS is made up of
many passive reflecting elements that can artificially control
the propagation of electromagnetic waves. By optimizing the
reflection pattern, IRS-assisted wireless communications have
been shown to enhance their communication quality without
significantly increasing energy consumption or implementation
costs [1], [2].

To fully utilize the benefits of a passive IRS, a large number
of reflecting elements is required along with accurate channel
state information (CSI). To obtain the CSI, the IRS cascaded
channel from a device to a base station (BS) via an IRS
has been estimated at the BS or device in general since a
passive IRS incapable of performing signal processing cannot
estimate the channels for itself. There exist some challenges
in IRS cascaded channel estimation which are due to the non-
Gaussian property of the IRS cascaded channel that renders
the optimal minimum mean square error estimator intractable
and due to the estimation of massive channel components
associated with IRS elements. For the first challenge, deep
learning networks have been applied to obtain an estimate
close to the optimal one for IRS-cascaded channel estimation
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[3]. Channel estimation with a reduced pilot reflection pattern
has been applied to tackle the second challenge [4], [5].
However, most studies have assumed frequency-flat fading in
IRS-cascaded channel estimation.

In practice, wireless channels tend to be frequency selective
multi-path fading for which orthogonal frequency division
multiplexing (OFDM) is a natural choice [6]. Channel es-
timation for OFDM without IRS was studied with a deep
residual network for super-resolution in the frequency domain
[7]. Channel estimation for an IRS-assisted OFDM system was
studied when the channel measurements are available for all
IRS elements with the full pilot overhead [8]. To reduce the
pilot overhead, a residual network (ResNet) was adopted and
optimized for IRS-assisted OFDM to provide spatial-domain
super-resolution with the channel measurements made only for
part of the IRS elements [9]. However, ResNet was optimized
for each signal-to-noise power ratio (SNR) value, which needs
extensive training data and training time as well as extensive
memories to save the model parameters optimized for each
SNR value [9].

To cope with the drawbacks of ResNet, we address the
modified deep residual U-shaped network (mDRUNet) pro-
posed for IRS channel estimation in flat fading [5] to OFDM-
based IRS cascaded channel estimation. The network employs
a noise map at the input to develop a single trained network
dealing with various SNR values, which can reduce the offline
training overhead and hardware costs significantly.

II. SYSTEM AND CHANNEL MODELS

We consider an IRS assisted OFDM system experiencing
multi-path fading channels as depicted in Fig. 1. A BS and
a device are equipped with a single antenna for each, and a
passive IRS is constructed with N reflecting elements. The
channel impulse response (CIR) between the BS and IRS,
denoted by g(τ), and the CIR between the IRS and device,
denoted by f(τ), are modelled as

g(τ) =
Lg∑
l=1

αg
l a

∗(θgl , ψ
g
l )δ(τ − τgl ), (1)

f(τ) =
Lf∑
l=1

αf
l a

∗(θfl , ψ
f
l )δ(τ − τfl ), (2)

where Lg (Lf ) is the number of multi-paths in CIR g(τ)
(f(τ)), αx

l , τxl , θxl , and ψx
l represent the complex fading ampli-

tude, delay time, azimuth angle, and elevation angle of the lth
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Fig. 1. System model for an IRS-assisted OFDM communication network.

path in CIR x ∈ {g, f}, respectively, and a(θ, ψ) ∈ CN×1 is
the array response of the IRS employing the Nh×Nv uniform
planar array. Specifically, we have

a(θ, ψ) = ã(u, v)|u=sin(θ) cos(ψ),v=sin(ψ) (3)

with ã(u, v) = ãNh
(u) ⊗ ãNv (v), where ⊗ is the Kronecker

product and

ãJ(x) = [1, e−j2π d
λx, · · · , e−j2π d

λ (J−1)x]T (4)

is the array response of a uniform linear array with J elements
at spacing d = λ/2 for a signal of wavelength λ incident with
angular parameter x. Accordingly, the IRS cascaded channel
is described as

h(τ) =
Lh∑
l=1

αh
l ã(u

h
l , v

h
l )δ(τ − τhl ) =

Lh∑
l=1

hlδ(τ −∆h
l Ts), (5)

where Lh = LgLf , αh
l = αg

l1
αf
l2

, τhl = τgl1 + τfl2 = ∆h
l Ts

with sampling time Ts, and hl = αh
l ã(u

h
l , v

h
l ) with uh

l =

− sin(θgl1) cos(ψ
g
l1
)+sin(θfl2) cos(ψ

f
l2
) and vhl = − cos(ψg

l1
)+

cos(ψf
l2
) for l = (l1 − 1)Lf + l2 with l1 = 1, 2, · · · , Lg and

l2 = 1, 2, · · · , Lf .
To estimate the multi-path fading channel, the device trans-

mits the OFDM symbol generated with fast Fourier transform
(FFT) of size K during the channel estimation phase. The
frequency-domain symbol vector constructing the tth OFDM
symbol is denoted by Xt = [Xt[0], Xt[1], · · · , Xt[K − 1]]T

for t = 1, 2, · · · , TP , where Xt[k] is the pilot symbol at kth
subcarrier and TP is the number of pilot OFDM symbols.
The IRS reflects the tth OFDM symbol with reflection pattern
ϕt = [ϕt1, ϕt2, · · · , ϕtN ]T . To reduce the pilot overhead, only
a subset of IRS elements are turned on at each symbol time
as |ϕtn| = 1 for n ∈ Non and ϕtn = 0 for n ∈ N c

on, where
Non is the set of IRS elements turned on to reflect a signal.

The received symbol of the kth subcarrier at the BS is
expressed as

Yt[k] = ϕT
t H[k]Xt[k] +Wt[k], k = 0, 1, ...,K − 1, (6)

where Wt[k] ∼ CN (0, σ2) is the zero-mean complex Gaussian
noise with variance σ2 at the kth subcarrier and H[k] ∈ CN×1

is the channel frequency response (CFR) of the cascaded
channel at the kth subcarrier. The CFR is expressed as

H[k] =

Lk∑
l=1

αh
l ã(ϑ

h
l , φ

h
l )e

−j2πk∆h
l /K = G[k] ◦ F[k], (7)

Noise map

Skip connection

map

Fig. 2. mDRUNET structure for channel extrapolation.

where G[k] and F[k] represent the CFR of g(τ) and f(τ),
respectively, and ◦ denotes the Hadamard multiplication. All
the received symbols during the channel estimation phase are
expressed in a vector form as

Y[k] = [Y1[k], Y2[k], ..., YTP
[k]]T = ΦPH[k] +W[k], (8)

where ΦP = [ϕ1, ϕ2, · · · , ϕTP
]T and W[k] = [W1[k],W2[k],

· · · ,WTP
[k]]T .

III. DEEP DENOISING CHANNEL EXTRAPOLATION

This section describes the data preparation and network
model for deep-learning based channel estimation. For the
input data, we adopt the TP × TP orthogonal matrix subject
to |[Ξ]ij | = 1 and ΞΞH = ΞHΞ = TP ITP

for a subset of
IRS elements turned on for reflection. Then, we can express
ΦP = ΞB, where B ∈ RTP×N is the reflection pattern
matching matrix given by [B]mn = 1 for n ∈ Non and
[B]mn = 0 for n /∈ Non. Then, the received signal (8) can be
expressed as

Y[k] = ΞBH[k] +W[k] = ΞHP [k] +W[k], (9)

where HP [k] = BH[k] ∈ CTp×1 represents a subset of the
IRS cascaded channels observed at the receiver for the IRS
elements used in channel estimation at the kth subcarrier.
The least-square (LS) estimation of the punctured CFR can
be computed as

ĤP
ls [k] = (ΞHΞ)−1ΞHY[k] = HP [k] +Wls[k], (10)

where Wls[k] ∼ CN (0, σ2
ls, ITP

) and σ2
ls = σ2/TP is the

noise variance of the LS estimate.
With the LS estimates ĤP

ls [k]}
K−1
k=0 on the punctured CFR,

we obtain the estimate {Ĥ[k]}K−1
k=0 of the original CFR

{H[k]}K−1
k=0 by modifying the mDRUNet proposed in [5] as

shown in Fig.2. The input is constructed by TP × K × 3,
where the first two channels of size TP × K are the real
and imaginary parts of {ĤP

ls [k]}
K−1
k=0 whilst the third channel

of size TP × K is given by the noise variance σ2
ls/2 of

the real and imaginary parts of the LS estimate. The three
channels are upsampled to obtain the N × K × 3 input by
duplicating the LS estimates and variances. The output is given
by the real and imaginary parts of the extrapolated channel
{Ĥ[k]}K−1

k=0 of size TP × K × 2. Here, the noise variance
in the input allows us to train a single unified model that
handles diverse noise levels. The DRUNet is constructed by
the two-dimensional convolutional network (Conv) followed
by residual blocks (ResBlock) and two scaling connected by
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Fig. 3. MSE of the cascaded IRS-OFDM channel as the channel SNR
increases when TP = 32 with 50 % pilot overhead reduction.

an identity skip for each scaling consisting of the downscaling
operation involving a 2×2 strided convolution (SConv) and the
subsequent upscaling operation employing a 2× 2 transposed
convolution (TConv). The last scaling is connected to the con-
volutional layer to provide the output. The number of channels
at Conv, SConv1 (TConv1) and SConv2 (TConv2) are 64, 128,
and 256, respectively, where the activation functions are not
employed. Each ResBlock consists of two successive residual
blocks accompanied by ReLU activation function at the end of
each block. The model parameters Θ of the mDRUNet with
the output described by f({ĤP

ls [k]}
K−1
k=0 , σ2

ls;Θ) with input
({ĤP

ls}
K−1
k=0 , σ2

ls) is trained to minimize the mean square error
(MSE) loss function.

IV. EXPERIMENTAL RESULTS

To evaluate the performance, we adopt N = 8×8 = 64 for
the IRS and K = 64 for the FFT size when the location
of the BS, IRS, and device in the (x, y, z) coordinates is
given by (0, 0, 10), (50, 50, 10), and (60, 40, 0) in meters,
respectively. The multipath intensity profile of the channels
is set to the uniform power with Lg = Lf = 2 at the
delay of [τg1 , τ

g
2 ] = [0, 1] and [τf1 , τ

f
2 ] = [0, 2] and the

azimuth and elevations angles are generated from the uniform
distribution over [−∆π

2 ,∆
π
2 ) with the normalized maximum

angular spread ∆ = 0.1. We generate total D data samples
that are allocated to training, validation, and testing at 8 : 1 : 1
ratio. For training, the ADAM optimizer of learning rate 10−3

is used with batch size 100 up to 100 epochs. The benchmark
schemes are optimized for each SNR value with D = 100k
data samples whilst the proposed mDRUNet is optimized for
various SNR levels with D data samples having different SNR
values.

Figs. 3 and 4 provide the normalized MSE of the deep-
learning based estimators as the channel SNR, 1/σ2, varies
when TP = 32 and TP = 16, respectively, corresponding
to the pilot overhead reduction by 50 % and 25 % when
compared to the full reflection. Here, mDRUNet-S denotes
mDRUNet with a single network trained over all SNR val-
ues while mDRUNet, SRNet, and ResNet denote mDRUNet,
super-resolution network [4], and ResNet [9] optimized for

     
 























 
 



Fig. 4. MSE of the cascaded IRS-OFDM channel as the channel SNR
increases when and TP = 16 with 25 % pilot overhead reduction..

each SNR value, respectively. The results show that mDRUNet
provides a significant performance improvement compared to
SRNet [4] and ResNet [9]. Furthermore, mDRUNet-S deploy-
ing a single model for all SNR values exhibits a negligible loss
when compared to mDRUNet optimized for each SNR value,
which alleviates the training burden in data size and delay.

V. CONCLUDING REMARKS

This paper presented a robust deep-learning based channel
extrapolation method for the IRS-cascaded OFDM system
by utilizing the noise variance input additionally. The results
showed that the proposed mDRUNet with a single trained net-
work provides a much better performance than the benchmarks
whilst simultaneously reducing the training data and training
time.
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