
A∗
r: a Bounded Suboptimal Search algorithm using

Conditional Node Re-expansion Policy
Tien Minh Dam, Dao Tran Le, Long Viet Truong,

Huyen Thi Dinh, Ngan Kim Nguyen, Tuan Anh Nguyen, Hung Viet Bui, Nguyen Manh Tiem, Le Manh Ha
Viettel High Technology Industries Corporation, Vietnam

{tiendm9, daolt3, longtruong, huyendt40, ngannk6, tuanna63, hungbv, tiemnm, halm8}@viettel.com.vn

Abstract—The A* algorithm is a well-known graph search
technique widely used in various domains like robotics, games,
and logistics. A* combines breadth-first search and heuristics to
find optimal paths by evaluating cost and heuristic estimates.
However, optimization challenges persist, leading to the need for
suboptimal solutions within predefined quality bounds. In the
case of Bounded Suboptimal Search, a possible strategy is to
reduce unnecessary re-expansions effectively. Existing researches
have explored distinct approaches across two primary domains:
Never Re-expansion (NR) and Always Re-expansion (AR). In this
paper, we introduce an innovative paradigm termed Conditional
Re-expansion (CR). This novel algorithm selectively permits
re-expansions that yield a considerable decrease in the g-cost
value, contingent upon an acceptance error parameter denoted
as r. Additionally, we propose an efficient anytime algorithm
to rectify the outputs of the algorithm mentioned before. This
involves prioritizing the repair of states that were denied re-
expansion in the CR phase. Theoretical groundwork and practical
demonstrations across diverse benchmarks have been conducted
to validate the findings.

Index Terms—A* algorithm, path planning, bounded subopti-
mal search, weighted A*

I. INTRODUCTION

In the realm of problem-solving, particularly in the context
of planning, almost real-world scenarios demand the efficient
navigation of spaces, routes, or networks. Such instances
encompass a wide spectrum of applications, ranging from
robotics and autonomous vehicles to logistics and computer
communication. The field of computer science has offered in-
valuable techniques to address these challenges, with heuristic
search algorithms playing a pivotal role in devising optimal
solutions.

The classic A* algorithm [1] and its variant, Iterative
Deepening A* (IDA*) [2], have proven at solving heuristic
search problems optimally. As demands for versatility and
adaptability have grown, the Weighted A* (WA*) algorithm
[3] emerged, allowing us to balance between solution quality
and computational efficiency through a weighted cost func-
tion. Building upon this foundation, the concept of Revised
Dynamically Weighted A* [4] was introduced. This innovative
extension to WA* dynamically adjusts the weight assigned to
each node’s estimated distance, resulting in improved search
efficiency while maintaining solution quality. The evolving
landscape of heuristic search led to the development of
Bounded Suboptimal Search (BSS) [5]. It incorporates a
cost parameter within the bound calculation, thus offering

a more flexible approach to balancing solution quality and
computational resources.

It is a widely acknowledged fact that A* utilizing a consis-
tent heuristic, signified by f-cost exhibiting monotonic growth
along paths, solely expands a state subsequent to the discovery
of the most cost-effective path leading to it. Nonetheless,
this principle is not applicable to scenarios featuring non-
monotonic f functions, wherein f may decrease along certain
paths. Such situations arise when the employed heuristic h is
inadmissible or even if it is admissible but inconsistent. In
these instances, a state, denoted as s, could be generated with
a lower g-cost value subsequent to its prior expansion. This
circumstance necessitates the removal of s from the Close
list, which contains states that will not be considered for
expanding, and its subsequent re-inclusion in the Open state
list, where it can be expanded again. This procedure is referred
to as reopening. A re-expansion, on the other hand, arises when
the state, having been extracted from the Open list, undergoes
a secondary expansion subsequent to its earlier expansion.
Note that states reopened will be re-expanded later if the
algorithm runs out of the Open list. The act of re-expansion
is discretionary, allowing for a choice of not expanding. This
practice often entails updating its g-cost value and its parent
pointer as appropriate [6]. Two fundamental reopening policies
constitute the baseline approach: Always Re-expansion (AR)
and Never Re-expansion (NR).

AR and NR policies represent the polar ends of the spec-
trum, advocating either the constant re-expansion or perpetual
avoidance of node re-expansion. However, a more adaptable
approach can be realized through the implementation of a
hybrid policy. This strategy affords the flexibility to selectively
reopen specific nodes, while concurrently opting to abstain
from reopening others, thus striking a balance between these
contrasting paradigms.

Looking at these situations, this paper introduces two novel
algorithms aimed at continuing to enhance the performance of
WA* and it can be widely applied in other BSS algorithms.

• The first algorithm A∗
r , implements Conditional Re-

expansion (CR) Policy, selectively re-expands state when
a shorter path is found. This approach reduces the number
of node re-expansions, leading to improved efficiency.
The algorithm is specified by a r value.

• The second algorithm, named the Incremental Repair
A∗

r , addresses cases where the founded solution lacks

985979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

TABLE I
DOMAINS WHERE WA* PERFORMS POORLY DUE TO THE COST OF RE-EXPANSIONS

Algo. Domain A* (w=1.5) WA* (w=2) WA* (w=5) WA* (w=10) WA* (w=20) BFS

Node re-expansions (ratio)
Maze 512 0.25 0.79 0.93 0.95 0.95 0.96
London 1024 0.40 0.74 0.83 0.87 0.89 0.91
Berlin 1024 0.41 0.96 0.98 0.98 0.97 0.96

quality due to the conditional re-expansion policy by
repair strategy.

These algorithms collectively contribute to a more efficient
and effective search for optimal solutions in BSS.

II. BACKGROUND

In the domain of BSS, algorithms face the dual challenge
of (1) discovering a feasible solution and (2) establishing that
the solution lies within the suboptimal bound. A* and WA*
effectively accomplishes both objectives through a straightfor-
ward priority function. Additionally, the research [8] includes
a bounding function B(c), which provides an upper bound
on the solution quality for the given problem. For a problem
instance with a solution cost C∗, the algorithm’s objective is to
return a solution P that costs C ≤ B(C∗). In the case of WA*,
the bounding function B(c) is defined as w-optimal. The scope
of this paper is limited to the study of w-optimal bounding
functions, as other bounding functions introduce complexities
beyond the paper’s focus.

To motivate the study of not performing re-expansion, we
demonstrate the results of numerous previous researches. Re-
expansion and reopening have a significant impact in BSS [9].
Performing or not performing re-expansion also has an impact
on solution quality [8]. Martelli’s research [10] showed that if
an A* search which re-expands nodes is used on a problem that
has G(V,E), |V | > 4 as a graph, then the search will require
O(2|V |) expansions to explore that region of the search space.
Martelli proposed a modification to A* which only requires
O(|V |2) expansions to traverse through such graph while still
ensuring that all solutions found will still be optimal. However,
by adopting NR strategy, recent research of Valenzano et al.
[6] ensured that the maximum required expansions are capped
at |V |, thereby minimizing computational overhead. Yet, it is
important to note that this approach comes without a reduction
of guaranteed optimality.

This is illustrated in Table I which shows the substantial
ratio of re-expansion nodes can lead to undesired search
performance of AR. We examine the performance of WA*
with different settings by changing the weight of heuristic.
Best-First Search (BFS) is the special case of WA* when
w = ∞. As can be seen in the table, the large effort
of expansion is truly for re-expansion, and as a result, it
downgrades the performance of WA*.

A simple but effective approach to resolve issues of WA*
re-expansions is NR. We experimented both AR and NR in
real world domains (table II) and found that NR outperformed
AR in almost all cases. However, NR has a significant issue:
general BSS NR may fail to return a solution within the
bound of quality (exception of WA*). Recent work NRR1,

NRR2 [11] attempt to fix the issues of BSS NR by restarting
repair from previously failed NR. Note that in the mentioned
paper [11], authors used the term NR, AR meaning to Never
Reopening, Always Reopening, but theory behind them is
the same with re-expansion [6]. NRR2 implements a repair
mechanism by using an Inconsistent list (ICL). The general
idea of maintaining ICL and adding it to the Open list
at a later stage was used before in the context of anytime
search algorithms. It was first proposed by [7] as part of their
Anytime Repairing A* (ARA*) algorithm, where a series of
WA* executions are performed with NR. After every iteration,
the w parameter is decreased and the ICL is added to Open
list.

III. THEORETICAL NOTATION

This section provides theories, assumptions and notions
used consistently in the theoretical parts of this paper.

Termination and completeness. Theoretically, on finite
graphs G with non-negative edge weights, A* is guaranteed to
terminate and is complete, i.e. it will always find a solution (a
path from start to goal) if one exists. On infinite graphs with a
finite branching factor and edge costs that are bounded away
from zero d(x, y) > w > 0, A* is guaranteed to terminate only
if there exists a solution. Realistically, construction a full graph
G sometimes costly (computation, memory) and a minor part
of G takes part in the search. We just only care some specific
areas G′(V ′, E′) | V ′ ⊂ V,E′ ⊂ E in G.

Consistency. If path planning problem is consistent,
⟨A,G(V,E), ss, sg⟩ unchanged and the A* algorithm have
constant heuristic, A* algorithm give the same solution for
all run, except incremental A*. We consider the consistency
of heuristic function: (1) h(sg) = 0 and (2) h(si) ≤
c(si, successor(si)) + h(successor(s)), ∀si ̸= sg .

Optimality and admissibility. The heuristic function h(si
is called admissible if h(si is never larger than c∗(si), namely
c∗(si) is always less or equal to true cheapest cost from
si to the sg . A* is admissible if it uses an admissible
heuristic, and h(sg) = 0. If the heuristic function h(si) always
underestimates the true cost h(si) ≤ c∗(si), A* is guaranteed
to find an optimal solution.

Suboptimality. A cost function c : E → R>0 assigns a
cost to each edge. The cost of a path is the sum of the edges
along that path. A bounded suboptimal problem is then given
by ⟨A,G(V,E), ss, sg⟩ where w ≥ 1. (or ϵ in some cases).
C∗ is the length of an optimal solution path (i.e., one with
lowest cost) The cost function will be f(s) = g(s)+w ∗h(s).
Such solutions are said to be w-optimal or w-admissible.

Notation of g-cost error. The value measured the difference
between the true g-cost value and the g-cost value after the

986

TABLE II
COMPARISON OF NR AR ON STREET MAP BENCHMARK DOMAINS

Criterion A* AR A* NR BFS AR BFS NR

Solution length
Boston 1024 1546 1629 1632 1633
Shanghai 1024 1487 1532 1614 1624
NewYork 1024 1468 1540 1542 1548

Average time (ms)
Boston 1024 7367 3764 26 22
Shanghai 1024 3145 1316 24 20
NewYork 1024 3504 1817 58 51

(re-)expansion t was first described in [6] and denoted as g-
cost error. Let g∗(s) is the true optimal g-cost value of the
state s. After the re-expansion s, if the gt(s) value is lower
than the previous value of g(s), the re-expansion will be valid.
The g-cost error was referred to gδt = gt(s)− g∗(s).

To convenient remainder, in this paper, the similar term g-
cost coverage-error mentioned the subtraction of the tentative
g-cost value after re-expansion t from the existed g-cost value
after (re-)expansion t − 1, was denoted as gt−1(s) − gt(s).
The behavior of g-cost coverage-error is never enlarged as the
search progresses because re-expansion only happens if g-cost
is better updated.

IV. CONDITIONAL RE-EXPANSION POLICY

The first innovative contribution of this paper is a condi-
tional re-expansion policy (CR) as described by Algorithm 1.
In AR, the algorithm re-expands to old states whenever it finds
a better solution to this one. In NR, if a node is moved from
the Open list to the Close list, it will not expand the second
time. The main idea of NR is to increase the performance of
the search by ignoring all the re-expansion. CR is the algorithm
that lies on the gap between AR and NR. By only doing
potential re-expansions, it reduces the number of unnecessary
re-expansions. The condition of re-expansion is if the current
re-expansion repairs the large enough error to this current state
(as determined by the comparison of theg-cost coverage-error
to the r value - line 16 in Algorithm 1). We denote r as the
g-cost error acceptance bound that gives a threshold for g-cost
coverage-error that will be fixed.

To motivate the use of CR, this section describes why the
hybrid re-expansion approach can be helpful. Initially, the idea
of the CR policy originates from an observation made while
examining the substantial volume of re-expansions occurring
within a single node. This concept was triggered by insights
gleaned from analyzing the distribution of re-expansion oc-
currences in the wide range of cases. Figure 1 illustrates the
frequency of re-expansion efforts observed during a the BFS
operation conducted on the Berlin street map dataset [12].
Furthermore, within diverse practical domains, it becomes
evident that only a few re-expansions have the potential to
substantially enhance solution quality. In the best situation, the
algorithm only endorses (re-)expansions featuring the lowest
g-cost values. Nonetheless, the present search process lacks
the capability to determine the ideal (re-)expansion, so the
better-enough one is inherently the suitable choice.

Figure 2 illustrates the ECDF chart of the g-cost coverage-
error when running BFS AR in the same domain as Figure

Fig. 1. Frequency of number re-expansions in the same node

Fig. 2. Proportion or count of observations falling below each unique value
in tuple of g-cost coverage error

1. The cumulative value of errors surpassing 0.6 constitutes
a mere 20% of the overall error count, yet remarkably con-
tributes to 60% of the total errors. Within more intricate do-
mains, this value demonstrates a substantial increase. Notably,
when experimenting with numerous practical cases, we found
that fixing a minor number of g-cost coverage-errors can
substantially improve the quality of the search by reducing
a large amount of total g-cost coverage-error.

Lemma 1 about the completeness of CR: In a finite state
space, at all times, a bounded suboptimal search (i.e. BFS,
WA*) with consistent heuristic is complete even if it refuses
all re-expansions.

Although it is practically demonstrated by the performance

987

Algorithm 1 Generic A∗
r

1: procedure CR ASTAR(start, goal, r)
2: Open ← {start} ▷ Priority Queue
3: Close ← ∅
4: while Open ̸= ∅ do
5: si, g(si) ← Open.remove best()
6: if si = goal then return Solution
7: end if
8: add si to Close
9: for each sj ← successor(si) do

10: g(sj)new ← g(si) + c(si, sj)
11: if sj is in Open then
12: update new cost g(sj)new)
13: set si as parent of sj
14: else if sj is in Close then
15: set si as parent of sj
16: if g(sj)old − g(sj)new > r then
17: move sj from Close to Open
18: end if
19: else
20: Open.add(sj , g(sj)new)
21: end if
22: end for
23: end while
24: end procedure

of the best first search without re-expansion, we restate this
lemma to show the proof of CR termination.

Proof: In the best case, the CR algorithm needs n expan-
sions (as the length of a solution with the smallest number
of states). In the worst case, because of no re-expansion, this
algorithm has to expand to all states before finding the goal
sg then terminate.

A* with a consistent heuristic is guaranteed not to expand
any state more than once [7]. This is also true in the case of
conditional re-expansion. Nevertheless, the search is without
the bound for the inconsistent heuristic [6].

V. INCREMENTAL REPAIR A∗
r

The second contribution of this research is the introduction
of a more advanced version of the Anytime A* search, denoted
as Incremental Repair A∗

r (IRA∗
r) and outlined in Algorithm

2. This abstract pseudo code is motivated by the framework
of NRR2 [11] but introduces considerable refinements. Firstly,
the Inconsistent list is replaced by a distinct set termed Repair
(line 4). While the concept of reserving nodes for later use,
as seen in Anytime Repairing A* [7], is retained, this novel
set focuses on maintaining exclusively the most promising re-
expansions, specifically selecting the reduction of the most
substantial g-cost coverage-errors. Secondly, the prioritization
of repairs based on g-cost coverage-error values ensures a
more efficient implementation, especially in the case of time-
bound Anytime A* search. By rectifying larger errors ahead
of smaller ones, the algorithm is poised to rapidly converge
towards a provable solution. The algorithm concludes under

two conditions: upon the attainment of a provable solution or
in cases where no promising nodes remain available (the Open
list is empty)

In practical scenarios, the IRA∗
r algorithm demonstrates

remarkable convergence efficiency, typically requiring only
few loops to approach convergence. This is achieved by setting
a much lower value for r (line 16) in the next loop, effectively
reducing the scope for acceptance of errors. This approach
yields results closely aligned with, if not surpassing, the (sub-
)optimal solutions achievable through the AR policy.

Algorithm 2 Generic Incremental Repair A∗
r

1: procedure REPAIR COND REEXP ASTAR(start, goal)
2: Open ← {start} ▷ Priority Queue
3: Close ← ∅
4: Repair ← ∅
5: r ← inital value
6: while Open ̸= ∅ do
7: Sol, Repair ← CR Astar(start, goal, r)
8: if Sol is provable then return success
9: else

10: Open ← Open ∪Repair
11: Close ← Close \Repair
12: r ← lower(r)
13: end if
14: end while return failure
15: end procedure

As a consequence of a finite state environment, this al-
gorithm always terminates when the solution was found or
all the state is (re-)expansion. In the worst case, the heuristic
is very inconsistent or the environment contains several local
minima leading the algorithm travels through 2k nodes (k is
the number of vertices of the graph) after it finds the goal.

Lemma 2 about the completeness of IRA∗
r: In a finite

state space, at all times, if there is at least a provable solution,
IRA∗

r always finds one.
Proof: As the consequence of the existence of a provable

solution, at the base case r = 0, the CR algorithm turns to
AR, so it always meets the requirement for this lemma. Let
rmin is the minimum g-cost error of all nodes. When the line
12 was called many times, hence, r decreases to rmin, it also
meets the condition.

In another way, if the distance of loosest provable solution
and the latest found solution in particular space is major, the
amount of error acceptance bound should be set bigger, so r
is down considerably.

VI. EXPERIMENTAL RESULTS

To demonstrate the results of the new innovative algorithms,
we performed and compared them on several benchmarking
domains.

The classical domains: Firstly, we evaluated our approach
on classical domains including the blocks world (BW), and
sliding puzzle (STP). These famous domains, while well-
studied, serve as a foundational baseline to showcase the

988

TABLE III
THE TREND OF RE-EXPANSION AND OPTIMALITY OF WA* AND BFS WITH DIFFERENT RE-EXPANSION POLICIES

Map Set
Avg.
Num.
States

Heuristic
Acc.

Branching
factor

Avg. Re-expansion Ratio Avg. Optimality
A* (w = 1.5) BFS (w = ∞) A* (w = 1.5) BFS (w = ∞)
AR CR NR AR CR NR AR CR NR AR CR NR

BW 59,049 0.29 2 0.12 0.01

0.00

0.46 0.3

0.00

0.88 0.86 0.82 0.26 0.25 0.23
STP 3x3 362,880 0.33 [1-3] 0.02 0.00 0.50 0.34 0.88 0.88 0.81 0.50 0.49 0.46
Road network 5,172,069 0.44 [0-12] 0.19 0.00 0.58 0.15 0.90 0.89 0.82 0.71 0.70 0.67
Random-40 96,365 0.46

[0-7]

0.06 0.00 0.78 0.60 0.90 0.89 0.87 0.84 0.83 0.73
Mazes-32 253,819 0.49 0.27 0.00 0.97 0.87 0.99 0.97 0.92 0.99 0.93 0.79
Street-1024 1,048,576 0.54 0.43 0.00 0.83 0.55 0.99 0.97 0.96 0.88 0.87 0.85
BG512 73,930 0.76 0.31 0.00 0.66 0.42 0.97 0.96 0.92 0.91 0.89 0.85

effectiveness of our algorithms. The heuristic is designed as
simplest as possible, while still being admissible and effective.
All of the domains are finite state problems with some different
characteristics:

The grid-based domains: The test set is taken from
Moving AI Lab [12], which is widely used to benchmark graph
searching algorithms. This domain contains maps of various
sizes, from 10 x 10 to 1024 x 1024 maps. The branching
factor of the problem is 8, and the depth of optimal solution
can be 1500 for a 1024 x 1024 map. The heuristic function is
implemented by using Euclidean distance.

The road network domain: To introduce a more intricate
problem domain inspired by real-world routing challenges,
we extend our experimentation to include a novel benchmark
domain that we have created. In addition to this, we explore the
Graph-based transport network derived from OpenStreetMap.
This network encompasses a substantial scale, boasting ap-
proximately 5.1 million vertices and 6 million edges. These
vertices predominantly represent terminal nodes of pathways,
while the edges correspond to segments connecting pairs of
nodes. The branching factor within this domain is around 4,
signifying the average number of successors a node may have.
This expanded framework enables us to delve deeper into the
complexities of routing problems and provides a fertile ground
for evaluating the efficacy and robustness of our proposed
algorithms. The heuristic function measures the orthodromic
distance of two points on the sphere which can be calculated
by Haversine formula.

Summary This observation in Table III showcases the
completely effectiveness of CR in maintaining a balanced
trade-off between solution quality and search efficiency. In our
dedicated testing framework, we observed a consistent pattern
in the behavior of AR, CR, and NR. We employed two criteria
for evaluation: (1) re-expansion ratio quantifies the overall
proportion of re-expansions in relation to the total number
of node expansions; (2) optimality assesses the quality of
the found solution in comparison to the optimal solution.
The initial experiment centered around the WA* algorithm
w = 1.5 while varying its re-expansion policies. Notably,
we observed that adopting a higher value of r in A∗

r likely
led to superior performance in comparison to both WA* with
AR or NR. This advantageous outcome was achieved with
only a marginal loss in optimality, offset by a significant
reduction in re-expansions. The same experiment was provided

to investigate the behavior of BFS CR across various domains.
In intricate environments, BFS AR consistently demonstrated
a notable re-expansion ratio. By employing either the CR or
NR policies, BFS exhibited accelerated search completion.
Remarkably, while CR introduced a reduction in optimality,
this compromise was substantially smaller compared to NR.

To facilitate a more comprehensive investigation, we gener-
ated detailed charts for some specific domains. The depiction
in Figure 3 illustrated the performance of WA* (with w = 2)
across different policies encompassing AR, CR at varying r
values, and NR. Evidently, a slight compromise in optimality
yields a notable enhancement in the overall performance of
WA*. We also conducted time measurements for various
configurations of WA* but did not show in this paper, due
to a strong correlation between the total time taken and the
number of expansions.

Furthermore, to showcase the effectiveness of IRA∗
r , we

conducted a comparison with different Anytime A* algorithms
using the NRR1 and NRR2 repair strategies. Our results
highlight that IRA∗

r not only provides provable solutions but
also achieves optimality. Figure 4 displays the correlation
between the number of node expansions and solution length
in the Berlin street map domain, this trend consistent across
other domains. NRR1 is quite slow, because it actives AR
algorithm from scratch after the NR failed to find solution
with the bound. While IRA∗

r may exhibit slower optimal
solution discovery after applying the CR policy, it rapidly finds
solutions within predefined bound.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced two novel algorithms, A∗
r

(A* with Conditional Re-expansion) and IRA∗
r (Incremental

Repair A∗
r), aimed at improving the performance of A*

and WA* algorithms in the context of bounded suboptimal
search. A∗

r implements a Conditional Re-expansion policy,
selectively allowing re-expansions based on a specified g-cost
error acceptance bound (r), effectively reducing unnecessary
re-expansions. IRA∗

r extends the concept by introducing a
repair mechanism that targets nodes with substantial g-cost
errors for re-expansion, aiming to convert suboptimal solutions
into optimal or near-optimal ones. Experimental results across
various benchmark domains, including classical domains, grid-
based domains, and road network domains, demonstrated the
effectiveness of these algorithms in enhancing solution quality

989

Fig. 3. Performance of WA* AR, WA* NR, A∗
r CR with w = 2 on the Road network domain. The bar chart illustrates the net value, while the line chart

shows the different value.

Fig. 4. An illustration of NRR1, NRR2, IRA∗
r performance on Berlin map.

IRA∗
r (loose dash line) provides optimal solution after reducing r value from

1 to 0.

and computational efficiency. While the proposed algorithms
exhibit promising performance, future work could involve
further optimization and fine-tuning of algorithm parameters
to adapt to different problem domains and explore their
applicability in more complex scenarios. Additionally, research
could focus on integrating these algorithms into real-world
applications and evaluating their performance in dynamic and
uncertain environments.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths,” IEEE Trans.
Syst. Sci. Cybern., vol. 4, no. 2, pp. 100–107, Jul. 1968, doi:
10.1109/TSSC.1968.300136.

[2] R. E. Korf, “Iterative-deepening-A: an optimal admissible tree search,”
in Proceedings of the 9th international joint conference on Artificial
intelligence - Volume 2, in IJCAI’85. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Aug. 1985, pp. 1034–1036.

[3] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artif.
Intell., vol. 1, no. 3, pp. 193–204, Jan. 1970, doi: 10.1016/0004-
3702(70)90007-X.

[4] J. Thayer and W. Ruml, “Using Distance Estimates in Heuristic Search.,”
presented at the ICAPS 2009 - Proceedings of the 19th International
Conference on Automated Planning and Scheduling, Jan. 2009.

[5] J. T. Thayer and W. Ruml, “Bounded suboptimal search: a direct
approach using inadmissible estimates,” Int. Jt. Conf. Artif. Intell., pp.
674–679, Jul. 2011, doi: 10.5591/978-1-57735-516-8/ijcai11-119.

[6] R. Valenzano, N. R. Sturtevant, and J. Schaeffer, “Worst-Case Solution
Quality Analysis When Not Re-Expanding Nodes in Best-First Search,”
2016, doi: 10.1609/aaai.v28i1.8850.

[7] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
Provable Bounds on Sub-Optimality,” Jan. 2003.

[8] R. Valenzano, S. J. Arfaee, J. Thayer, R. Stern, and N. Sturtevant,
“Using Alternative Suboptimality Bounds in Heuristic Search,” Proc.
Int. Conf. Autom. Plan. Sched., vol. 23, pp. 233–241, Jun. 2013, doi:
10.1609/icaps.v23i1.13563.

[9] C. M. Wilt and W. Ruml, “When Does Weighted A* Fail?,” Symp.
Comb. Search, Jan. 2012, doi: 10.1609/socs.v3i1.18250.

[10] A. Martelli, “On the complexity of admissible search algorithms,”
Artif. Intell., vol. 8, no. 1, pp. 1–13, Feb. 1977, doi: 10.1016/0004-
3702(77)90002-9.

[11] V. Sepetnitsky, A. Felner, and R. Stern, “Repair Policies for Not
Reopening Nodes in Different Search Settings.,” Symp. Comb. Search,
pp. 81–88, Jan. 2016, doi: 10.1609/socs.v7i1.18395.

[12] N. R. Sturtevant, “Benchmarks for Grid-Based Pathfinding,” IEEE Trans.
Comput. Intell. AI Games, vol. 4, no. 2, pp. 144–148, Jun. 2012, doi:
10.1109/TCIAIG.2012.2197681.

990

