
received power is maximum at N=1.

Fig. 3. Influence of differentms on interrupt probability

Figure 2 illustrates the impact of three different topologies,
namely 1-D, 2-D, and 3-D RWP mobility models, on the BER.
For a 1-D topology, we consider lines where the access
vehicle is located at the origin. The 2-D topology is assumed
to be circular, while the 3-D topology is a spherical
network.The graph clearly demonstrates that the 3-D model
yields the highest BER, while the 1-D model yields the lowest
BER.

Fig. 4. Influence of differentms on interrupt probability

Figure 3 displays the impact of different ms values on the
BER in a 1-D RWP mobility model. ms denotes the fading
factor, the larger ms is, the smaller the corresponding channel
fading is, when ms=1, the Nakagami-m fading channel is a
Rayleigh fading channel, at this time, the channel fading is the
largest and the BER is the largest, as ms increases, the channel
fading decreases and the BER starts to decrease, when ms=3,
the BER is the smallest.

IV. CONCLUSION

This paper analyzes the performance under Nakagami-m
fading channels, incorporating the MRC centering technique

to combat multipath fading. The RWP mobility model applied
between the transmitter and receiver is used to analyze the
performance in case the transmitter and receiver are mobile.
The corresponding mathematical formulas are derived to
analyze the PDF and CDF of the received signals under
Nakagami-m fading channel, the effect of change in ms on the
average BER, and the effect of different topologies on the BER
of Nakagami-m fading channel are also analyzed, in which the
3-D model has the largest BER and the 1-D model has the
smallest BER.
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Abstract—In Monte-Carlo simulations, various types of ran-
dom numbers are necessary for simulating various kinds of
stochastic phenomena. Using one-dimensional chaotic maps, we
can design statistical properties of the chaotic sequences, which
implies that chaotic sequences may be useful for Monte-Carlo
methods. In this paper, we examine auto-correlation properties
of binary sequences obtained by switching two chaotic binary
sequences generated by Bernoulli map. It is shown that binary
sequences with various new types of auto-correlation properties
can be generated.

Index Terms—Auto-correlation function, chaotic binary se-
quence, Bernoulli map

I. INTRODUCTION

Chaotic sequences can be used as random numbers for some
applications such as Monte-Carlo methods, stochastic comput-
ing, secure communications (cryptography) [1]. Especially, in
Monte-Carlo simulations, random numbers with appropriate
statistical properties are needed for simulating stochastic phe-
nomena [2]. Using one-dimensional chaotic maps and binary
functions, we can generate chaotic binary sequences with
various auto-correlation properties [3], [4].

In this paper, we generate new binary sequences obtained
by switching two chaotic binary sequences generated by
Bernoulli map. The auto-correlation properties of the new
binary sequences are investigated. It will be shown that we
can generate binary sequences with much more variety of
statistical properties by the proposed method.

II. CHAOTIC BINARY SEQUENCES GENERATED BY
BERNOULLI MAP

In this paper, we use Bernoulli map defined by [5]

τB(x) =

�
2x (0 ≤ x < 1

2 ),
2x− 1 ( 12 ≤ x ≤ 1),

(1)

which is shown in Fig.1. Using one-dimensional nonlinear
difference equation given by

xn+1 = τB(xn), xn ∈ I = [0, 1], n = 0, 1, 2, · · · , (2)

we can generate a chaotic real-valued sequence {xn}∞n=0.

0 1

1

1/2
x

τ
  
(x

)
B

Fig. 1. Bernoulli map

Next, define a pulse (binary) function by

P[a,b)(x) =

�
1 for x ∈ [a, b),
0 for x /∈ [a, b).

(3)

Using P[a,b)(x), we also define a binary function by

B
(m)
i (x) =

2m−1�
j=0

h
(i)
j P[ j

2m , j+1
2m )(x) (i = 1, 2, · · · , 22m), (4)

where h
(i)
j ∈ {0, 1}.

Here, we define the normalized auto-correlation function of
a sequence {an}∞n=0 by

C(�; an) =
E[(an − E[an])(an+� − E[an])]

E[a2n]− E[an]2
, (5)

where � is a time delay and E[·] denotes expectation. It
is known that chaotic binary sequences, {B(m)

i (xn)}∞n=0,
generated by Bernoulli map and B

(m)
i (x) have the normalized

auto-correlation function given by [6]

C(�;B
(m)
i ) =

⎧⎨
⎩

1 (� = 0),

ε� (� = 1, 2, · · · ,m− 1)

0 (� ≥ m).

(6)

In this paper, we use chaotic binary sequences {B(3)
i (xn)}∞n=0

(m = 3). Some examples of binary functions B
(3)
i (x) are
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0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0 0 0 0 1 1 1 1

x

B(x)

1

(a) binary function “00001111”

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0 0 1 0 0 1 1 1

x

B(x)

1

(b) binary function “00100111”

Fig. 2. Examples of binary functions B
(3)
i (x)

TABLE I
BINARY FUNCTIONS AND AUTO-CORRELATION VALUES

binary function, where Ij = [ j
8
, j+1

8
) correlation value

I0 I1 I2 I3 I4 I5 I6 I7 � = 1 � = 2

0 0 0 0 1 1 1 1 0 0

0 1 1 1 0 0 0 1 0 −0.25

0 0 1 0 1 0 1 1 0 −0.25

0 1 1 0 1 1 0 0 0.25 0

0 0 1 1 0 1 1 0 0.25 0

0 0 0 1 1 0 1 1 0.25 0

0 0 1 0 0 1 1 1 0.25 0

0 0 1 1 0 1 0 1 0.25 0

0 1 0 1 0 0 1 1 0.25 0

0 1 1 1 0 1 0 0 0.25 −0.25

0 0 1 0 1 1 1 0 0.25 −0.25

0 0 0 1 0 1 1 1 0.5 0.25

0 0 1 1 1 0 1 0 −0.25 0

0 1 1 1 0 0 1 0 −0.25 0

0 0 1 1 1 0 0 1 −0.25 0

0 1 1 0 0 0 1 1 −0.25 0

0 1 0 1 1 1 0 0 −0.25 0

0 1 0 0 1 1 1 0 −0.25 0

0 0 0 1 1 1 0 1 −0.25 0.25

0 1 0 0 0 1 1 1 −0.25 0.25

0 1 0 0 1 1 0 1 −0.5 0.25

shown in Fig.2, where the binary functions are denoted by
“00001111” and “00100111” for simplicity. Also, Table I
shows the auto-correlation values of the binary sequences
for � = 1, 2. Note that the number of 1s (and 0s) of
each binary function in Table I is 4, that is, the binary
sequences {B(3)

i (xn)}∞n=0 are balanced since Bernoulli map
has a uniform invariant density. In this paper, we consider such
balanced binary sequences.

III. SYNTHESIS OF TWO CHAOTIC BINARY SEQUENCES

Let {an} and {bn} be two chaotic binary sequences and
assume they are independent of each other. We generate a
new binary sequence {cn} by switching {an} and {bn} as
follows.

• The initinal value of {cn} is c0 = 0.

Generator-1

{a  }n

Generator-2

{b  }n

1

1

0

0

Fig. 3. Proposed sequence generation scheme

• If cn = 0, then cn+1 is given by taking the value of {an}
in order.

• If cn = 1, then cn+1 is given by taking the value of {bn}
in order.

This is illustrated in Fig.3. If each of {an} and {bn} is an
i.i.d. (independent and identically distributed) sequence, cn is
a Markov information source.

We investigate the auto-correlation properties of {cn}. As-
suming {cn} is also balanced (E[cn] = 1

2 ), its numerical
(normalized) auto-correlation function is calculated by

Ĉ(�; cn) =
1

N

N−1∑
n=0

(2cn − 1)(2cn+� − 1), (7)

where we set N = 1, 000, 000. Figure 4 shows the auto-
correlation functions of {cn} generated by some pairs of {an}
and {bn}. We find that various auto-correlation properties
are obtained by the proposed method. Also, we find that the
following common properties.

• Ĉ(1; cn) � 0
• Ĉ(2; cn) � (Ĉ(1; an) + Ĉ(1; bn))/2

IV. CONCLUSIONS

Auto-correlation properties of binary sequences obtained by
switching two chaotic binary sequences generated by Bernoulli
map have been investigated. It has been shown that various
auto-correlation properties can be obtained by the proposed
sequence generation method. We will theoretically analyze the
auto-correlation function in future study.
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(a) an: 00001111, bn: 00010111 (b) an: 00001111, bn: 00100111 (c) an: 00001111, bn: 01110010

(d) an: 00010111, bn: 00111010 (e) an: 00010111, bn: 01001101 (f) an: 00011101, bn: 01001101

(g) an: 00011101, bn: 01001101 (h) an: 00100111, bn: 01110100 (i) an: 01110001, bn: 00010111

(j) an: 01110001, bn: 00111010 (k) an: 01110001, bn: 01110100 (l) an: 01110100, bn: 00011101

Fig. 4. Auto-correlation functions of new binary sequences {cn}
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