

Partial Granger causality-based feature selection
algorithm for workload prediction in cloud systems

Changhoon Lee

Artificial Intelligence Lab
Okestro

Seoul, South Korea
ch.lee@okestro.com

Eunsoo Ko
Artificial Intelligence Lab

Okestro
Seoul, South Korea
es.ko@okestro.com

Minjae Song
Artificial Intelligence Lab

Okestro
Seoul, South Korea

mj.song@okestro.com

Hoyeong Yun
Artificial Intelligence Lab

Okestro
Seoul, South Korea

hy.yun@okestro.com

Wooju Kim
Dept. of Industrial Engineering

Yonsei University
 Seoul, South Korea
wkim@yonsei.ac.kr

Abstract—The development of the cloud technology led to
the rising interest in multi/hybrid cloud and emergence of
artificial intelligence for IT operations(AIOps). The core
elements of AIOps involve predicting how each metric of the
data center will change in the future. Compared to general
multivariate time-series prediction problems, causal
relationships between each variable have a significant impact on
cloud metric prediction. This paper focuses on the causality
between variables, which partially arises when a specific event
occurs in a cloud data center to achieve good predictive
performance. The proposed model detects partial causality and
sums it up again to extract key variables that explain the target
variable well. Through this, variables with higher predictive
performance than existing methods were found. We also
propose a structure that improves the performance of the
prediction model and minimizes inference time through a
variable selection technique based on partial causality. By
applying this to the actual operating cloud environment, it was
proved that it can be effectively applied to the real world.

Keywords—AIOps, Feature Selection, Granger Causality,
Prediction

I. INTRODUCTION
In the on-premise(physical server based) development

environment, the introduction of cloud including
virtualization technology has led to many changes in the SW
development environment. In particular, from the perspective
of infrastructure managers, many companies and institutions
began to adopt them because they were fascinated by the
apparent benefits. The primary benefits of cloud technology
include efficient network load response, quick recovery
during failures, and flexible server capacity calculation. [1]
Despite such exceptional features, infrastructure
administrators have been required to understand and respond
to not only simple servers but also the complex environment
of the cloud system. Due to the limitations in responding to
such situations based on individual administrator judgment or
rule-based processes, the use of concept of artificial
intelligence for IT operations (AIOps) has risen considerably.

[2] This facilitates the integration of AI in IT operations with
the overall aim of optimizing data centers efficiently,
increasing customer satisfaction, and improving development
productivity. From a research perspective, algorithms that can
appropriately calculate resource capacity and preemptively
respond to failures are considered key elements.

To maximize the performance of such algorithms, it is
important to accurately analyze all sorts of data (metric, log,
trace) collected from data centers and predict the values that
they would show in the future. By predicting resource usage
(metric), an appropriate capacity of resources can be
calculated in accordance with the usage patterns for several
months ahead. Furthermore, by predicting resource usage and
potential log patterns, failure-related patterns can be
preemptively detected and root causes can be analyzed, and
this further shortens resolution times. However, because cloud
technology has led to an increase in the complexity of
environments, data pipelines have also become sophisticated
and complex, requiring feature engineering that takes this into
account.

For feature engineering, like other multivariate data, the
correlation between numeric variables has significant
implications. [3] Various studies have been conducted,
including the use of correlation between the server
temperature and disk-related variables and failures, [4] or
diagnosing the cause of failures using the correlation between
alarms generated based on network-related variables.
Altogether, this helps analyze multiple events occurring at the
same time from various perspectives.

Researchers have also focused on maximizing the
performance of the target algorithm by analyzing the Granger
causality between individual variables to leverage the
characteristics of time-series data. [5] Patel et al. solved a
multivariate time-series prediction problem involving CPU
usage, memory usage, etc. using a Granger causality-based
model.

81979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Based on a detailed analysis of various studies, it was
observed that when performing feature engineering using
correlation, there are certain limitations in problems that
require predicting future points, not just the current point in
time. When Granger causality was used as an alternative,
although causality could be effectively detected in some
variables, there were many key variables wherein casualty
could not be detected. In particular, while it is difficult to find
clear correlations or causality with the target variable for most
times, when a specific event occurs in the target variable, the
variables that can play a significant role in triggering these
events have been identified.

Therefore, we inferred that partial Granger causality,
which occurs in the case of a meaningful event in the target
variable, could play an important role. We propose a partial
Granger causality-based feature selection method at the time
of event occurrence, which maximizes the prediction
performance of various numerical data occurring in cloud data
centers, and can also be applied to several other derivative
functions where causality is important.

Section 2 explains several key concepts associated with
this research. Section 3 explains how we collected and
preprocessed the data and implemented the proposed method.
Section 4 presents the proposed technique and several other
techniques into various prediction models, along with a
detailed comparison of their performance. Finally, Section 5
presents conclusions pertaining to limitations and implications
that can be derived from this research, along with the
directions for subsequent research.

II. RELATED WORK

A. Multivariate Prediction
a) Vector Autoregression

The Vector Autoregression(VAR) is an algorithm that
examines the dynamic relationship between multivariate
variables over time. [6] The VAR(p) formula between K
variables is as follows.  =  +  +  + ⋯ +  +  (1)

In Equation (1),  is a k-dimensional vector,  is a constant
vector, and  …  is a coefficient matrix of k by k
dimensions. Here,  represents an error term vector. [7]
Bussmann et al. proposed a method to identify non-linear
relationships in time series data, and their method was
referred to as neural additive vector autoregression. This
model uses a deep neural network to nonlinearly extract
Granger causal influences from multivariate time series. [8]
The VAR has also been combined with recurrent neural
networks for multivariate time-series data prediction.

b) KNeighbors Regressor
The KNeighbors Regressor(KNN regressor) is an algorithm
that derives the value to be predicted by calculating the
average of the nearest neighbors. Given the input training
dataset (X, y), (X, y), … , (X, y) and the new input
data point X, the output is the predicted value y for X.

It measures the distance d(X, X)between data points X and X, and it further selects K nearest neighbors. At this point,
after selecting the K nearest neighbors to X , the

predicted value y is calculated as the average of the
dependent variable values of the K neighbors.

 =  ∗ ∑ 
[9] Farahnakian et al. proposed a prediction method, referred
to as the KNN-UP(KNN-based Utilization Prediction),
which is a dynamic consolidation algorithm that turns off
hosts with low usage and leaves only the minimum hosts
based on current and future resource usage. They used the
KNN algorithm based on past resource usage data to predict
future resource demand. This is a representative example of
using KNN regression to predict hosts with excessive or
insufficient load. [10] Ban et al. used KNN regressor in
multivariate time series data regression.

 c) Long Short Term Memory

[11] The Long Short Term Memory(LSTM) is an algorithm
aimed at solving the vanishing gradient problem of Recurrent
Neural Networks(RNNs). It has the characteristic that a
single unit is composed of a cell, input gate, forget gate, and
output gate, making it possible to control the retention of long
and short-term memory.

The formula for the input gate is as follows.

i = σ(W  x + W  h + b)

The formula for the forget gate is as follows.

f = σ(W x + W h + b)

The update of the cell state is as follows.

g = tanh(Wx + Wh + b)

The cell state is as follows. C = f ∗ C + i ∗ g
The output gate is represented as follows.

o = σ(Wx + Wh + b)

The computation for the hidden state is as follows. h = o ∗ tanh(C)

where, i: Output of the input gate f: Output of the forget gate g Output of the update cell state C: Current cell state o: Output of the output gate h: Output of the hidden state x: Input vector at the current time step, h: Hidden state at the previous time step W, W, W, W: the weight matrices of each of the
four layers for their connection to the input vector x. W, W, W, W: the weight matrices of each of the
four layers for their connection to the previous short-term
state h. b, b, b, b: the bias terms for each of the four layers

82

*: Matrix multiplication

[a, b]: Concatenation of vectors a and b

 [12] Dang et al. proposed an efficient multivariate
automatic scaling framework using Bi-LSTM in a cloud
computing environment. They used the Bi-LSTM technique
to predict future resource workloads. [13] Patel and
Kushwaha attempted to predict the CPU utilization of cloud
servers at continuous time steps using a prediction model
method combining 1-dimensional Convolutional Neural
Networks (1D CNN) and LSTM, referred to as the pCNN-
LSTM(parallel CNN-LSTM).

B. Feature Selection
a) Recursive Feature Elimination

Recursive feature elimination (RFE) is an algorithm that
sequentially removes the least important variables using
feature coefficients after training on all features. [14] Nkiama
et al. used a decision tree-based classifier as a recursive feature
elimination technique to eliminate unrelated features with
network traffic information and use only the related features,
in the purpose of detecting intrusion. [15] Yan and Zhang
proposed the SVM-RFE+CBR(support vector machine-
recursive feature elimination and correlation bias reduction)
method, which adds linear and nonlinear characteristics to
improve SVM-RFE under specific conditions where it
becomes biased.

b) RandomForest regressor - feature importance
The Random Forest regressor is an algorithm based on the

ensemble method of Random Forest, which combines
multiple decision trees to make predictions and averages the
results to obtain the final predicted value. In Random Forest,
the feature importance is an indicator of the contribution of
each feature to the prediction. It is calculated by averaging the
impurity decreases across all decision trees. This decrease is a
decrease in impurity before and after the node split which was
based on a particular feature in each decision tree. [16]
Alduailij et al. adopted a method for selecting features using
Mutual Information and Random Forest Feature Importance
methods for DDoS Attack Detection.

c) Granger Causality Test
[17]The Granger causality test is a statistical algorithm that
evaluates the causal relationship between two variables in
time series data.

 Y = α + ∑(β ∗ Y) + ε (1)

 Y = α + ∑(β ∗ Y) + ∑(γ ∗ X) + ε (2)

In these two equations, if it is shown through the p-value that
(2) is a better regression model than (1) by performing a test
such as F test, it is stated that x “Granger causes” y. [18] Sun
et al. proposed a method for feature selection in multivariate
numerical time series problems based on the Granger
causality method. They stated that the Granger causality
method is significant because it selects suitable time windows
at the same time it chooses the appropriate relevant features.
[19] Hmamouche et al. developed an algorithm which
considers the hidden relationship that may occur between
variables when using Granger causality for feature selection.
[20] Dong and Kluger applied the feature selection method
using Granger causality to high-dimensional biological data.

III. METHODOLOGY

A. Data Collection
To validate the feasibility of the proposed method, we

prepared a virtualization environment based on OpenStack, an
open-source platform. This environment consists a total of 34
resources, including 5 physical machines (PM) used as
Hypervisors and 29 virtual machines (VM) created on those
Hypervisors. This environment, where various services are
being developed, was used for various purposes such as Web
Server, DB(Databases), Kubernetes Cluster, etc. To collect
metric data from these resources, we used ELK Stack, which
is an agent-based server data collection standard pipelines.
Through this, we collected data related to CPU, Memory,
Disk, and Network every 5 minutes, accumulating data for
five months from March 11 to July 11, 2022.

The collected data consists of a total of 89 variables.
Among these, (A) CPU Utilization, (B) Memory Utilization,
(C) Disk read bytes, (D) Disk write bytes, (E) Network in
bytes, and (F) Network out bytes were selected as the target
variables to be predicted. We seek to analyze the performance
of the proposed algorithm based on a comparison with the
performance of the multivariate time series prediction model
that includes the remaining 83 data according to each variable
selection technique.

Table 1 Hierarchical Structure of Virtual Resources
Physical

Machine (PM) Virtual Machine (VM) # of instances

Contrabass #1

platform-haproxy-vmware
5

(include PM)
platform-mkdocs
platform-nexus

platform-ptlmail

Contrabass #2

bigdata-elasticsearch-data-3

28

bigdata-elasticsearch-master-1
bigdata-kafka-1
bigdata-kafka-2
bigdata-kafka-3

bigdata-logstash-1
bigdata-logstash-2

cicd-harbor
platform-consul-1
platform-consul-2
platform-consul-3

platform-dns
platform-etcd0

platform-haproxy-lb
platform-k8s-master0
platform-k8s-worker0
platform-k8s-worker1
platform-k8s-worker2
platform-k8s-worker3
platform-k8s-worker4
platform-k8s-worker5
platform-keycloak-1
platform-keycloak-2

platform-nfs
platform-ptldb-1

bigdata-elasticsearch-data-3
bigdata-elasticsearch-master-1

Contrabass #3 - 1

Contrabass #4 gu-dev-mariadb 2
(incude PM)

Contrabass #5 platform-dev-mariadb 3
(include PM) platform-haproxy

Total 39

83

B. Preprocessing
In the case of VM units, we initially removed resources

that were created midway and possessed a short data
accumulation period. Additionally, we conducted further
filtering based on the presence of minimal activity by
checking the CPU usage and the number of processes running
on the resource.

For the metric units, we initially removed variables that
had negligible variance and were close to Unique or
Categorical variables. Furthermore, we eliminated variables
that conveyed nearly the same meaning as the target variables
and had a correlation coefficient close to one.

Figure 1 ACF(Auto Correlation Function) Plot for setting
lag values

When selecting the lag value for the model, we utilized the
average of the univariate standard ACF values of the overall
target variables. We found that if the lag value was too large,
the marginal increase in average accuracy according to the
number of variables was minimal, and this resulted in a
decrease in the feasibility of practical application in complex
cloud environments where large volumes of data are collected
in real time. Therefore, when applying the prediction model,
we standardized the lag value to observe up to three steps back
(15 minutes).

C. Model Architecture
The proposed algorithm is implemented in three major

steps. The process consists of selecting the window to be
analyzed through the Event Detector, checking the partial
causality of the dependent variable through the Causality
Detector, and deriving the final feature list by summing the
partial causality found per window.

Figure 2 Partial granger causality based feature selection
algorithm

1) Event Detector: From the entire time series, a window
that is as large as the actual window size is extracted and the
occurrence of events is checked based on basic statistics such
as the variance of the target variable in that section. The
window is then slid by the stride value to explore the next
window.

2) Causality Detector: By using the window list obtained
through the Event Detector, we check for causality between
the target variable and the remaining variables per section,
based on Granger causality, and we store the p-values.

3) Partial Causality Summation: By using the Granger p-
value matrix obtained through the Causality Detector, we
sum each section and extract the variables that most
frequently demonstrated causality.

Figure 3 Granger causality performed In dependent
variable y at the point where the event occurred (red),
confirming that x1 has Granger causality (yellow) and
that x2 does not

The three main feature selection techniques are the filter
method, wrapper method, and embedded method. The filter
method uses statistical measurements to discover correlations
between features and then selects the features with a high
correlation coefficient (influence).

The wrapper method is another approach to feature
selection, where subsets of features are made iteratively to
find the optimal feature combination.

The embedded method performs feature selection during
the learning process of a specific machine learning algorithm.

We sought to test and compare various methods using the
correlation coefficient method in the filter method, the RFE
method with linear regression as the estimator in the Wrapper
method, and the feature significances method which is
embedded in the random forest regressor package in the
embedded method.

We used a total of three prediction models: KNN
regressor, LSTM, and VAR. The KNN regressor was chosen
because it is a relatively lightweight algorithm that generally
offers good performance with default parameters, and it also

84

works well with non-linear problems. We chose the LSTM
model due to its high compatibility with time series data and
its ability to process sequences of diverse features. The VAR
model was used because it is most suitable for autoregressive
models that depend not only on independent variables but also
on dependent variables.

IV. EVALUATION
To validate the performance of our algorithm and the

comparison algorithms, we standardized the number of
variables created by the feature selection results. We also used
several prediction models to facilitate an objective
comparison. For the predictive performance, we used two
metrics: RMSE(Root Mean Squared Error) and MAE(Mean
Absolute Error).

The formula for RMSE is as follows.

 = ∑ ( − ) 

The formula for MAE is as follows.

 = ∑ | − | 

The main parameters for algorithm training are the basic
size of the window wherein partial Granger causality is
checked and the stride, which determines the unit to slide the
window. Considering both the simple prediction performance
of the model and the training time for the algorithm, we set the
stride equal to the window size and set the window size to 288
(one day).

Table 2 Performance of Feature Selection Algorithms by
Error Index by Prediction Model

According to the performance test of the feature selection
techniques for each indicator and prediction model, our
algorithm exhibited superior performance in most indicators.
In each prediction model, both RMSE and MAE showed the
same trend in performance ranking in the feature selection
model. Also, VAR prediction model consistently exhibited the
lowest RMSE values across all feature selection models than
other prediction models. Especially, in VAR model, our
model showed the most dramatic performance improvement.
In VAR, our model showed a 67% performance improvement
over the correlation-based model, which showed the worst
RMSE. In KNN, our model showed 18% performance
improvement and in LSTM it was 17%.

 In addition, the prediction performance of individual
target feature in each prediction model was compared for each
variable selection algorithm. In this performance comparison,

the Error Index was set to RMSE and the prediction model
was set to KNN Regressor for efficient experiment.

Table 3 Prediction Performance of Feature Selection
Algorithms by y Variable

Target
Feature

RFE
Based RF Based Correlation Ours

(A)CPU
Utilization 0.03971 0.04503 0.03641 0.03541

(B)Memory

Utilization
0.14830 0.15589 0.14962 0.08580

(C)Disk Read
Bytes 0.44087 0.43683 0.38216 0.38857

(D)Disk
Write bytes 0.33974 0.35384 0.35715 0.30134

(E)Network
In Bytes 0.31887 0.35764 0.31981 0.28382

(F)Network
Out Bytes 0.29410 0.32202 0.28984 0.26704

From the comparison of the predictive performance for
individual variables, it was observed while other model
showed better performance for some variable, our
experimental results generally showed superior performance.
For example, although for Disk Read bytes variable
correlation-based feature selection model showed better
performance than ours by 0.00641, our model showed the best
performance in all other variables. Specifically, for CPU
utilization, our model showed 21% better performance than
the model that showed worst performance, and 45% for
memory utilization, 15% for Disk Write bytes, 20% for
Network In Bytes, and 16% for Network Out Bytes.

When our algorithm performed better, variables related to
cpu steal or cpu iowait were selected as key variables in CPU
Utilization. In addition, in terms of memory utilization,
variables related to filesystem usage and disk write were
selected as key variables. In terms of cpu utilization prediction
performance, increasing values such as cpu steal or cpu iowait
makes it difficult to perform other processes in the same
physical machine or distribute cpu resources to multiple
virtual machines, affecting the overall use of cpu. In terms of
memory utilization prediction performance, as many of the
vm's analyzed are related to data pipelines, if values such as
filesystem usage or disk write increase, requests to save or
query big data-related DB are processed and affect memory
usage. In this way, it has been confirmed that variables
selected through our algorithm can have important meaning
even when using domain knowledge.

V. CONCLUSION

 We successfully minimized the load on the cloud system
by minimizing the number of variables that must be collected
through an effective feature selection technique. A simple
reduction in the large volume of collected data to about a
dozen produces many benefits in terms of network load and
storage space in the data collection environment. In addition
to maximizing the prediction model’s performance, we also
improved the performance of techniques for cloud resource

Error
Index

Predic
tion

Model

RFE
Based

RF
Based Correlation Ours

RMSE KNN 0.26360 0.27854 0.25583 0.22700

MAE KNN 0.23394 0.24437 0.22323 0.19697

RMSE LSTM 0.18197 0.17499 0.18066 0.15010

MAE LSTM 0.32057 0.31441 0.31886 0.28593

RMSE VAR 0.09989 0.12229 0.15955 0.05254

MAE VAR 0.25013 0.25931 0.29000 0.15005

85

optimization and anomaly pattern detection, which are
connected to the predictive model.

However, a considerable volume of the data
generated in cloud data centers, including unstructured data
like logs and traces, often contain information related to
causality. Therefore, using these data is essential to create
functions that optimize the data center or respond effectively
to failures. Accordingly, to create a root cause analysis model
that detects the root causes of failures in cloud systems, our
follow-up research will analyze causality including not only
metric data but also logs and traces. We plan to apply this
analysis to various models such as prediction and anomaly
detection.

ACKNOWLEDGMENT
This work was supported by Institute of Information

& communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT)
(No. 2021-0-00256, Development of Heterogeneous
Virtualization(VM+Container) Integrated Operation Technology
for Intelligent Management of Cloud Resources)

REFERENCES

[1] Y. Li, Z.M.Jiang, H.Li, A.E.Hassan, C.He, R.Huang, Z.Zeng, M.Wang,
and P.Chen., “Predicting Node Failures in an Ultra-Large-Scale Cloud
Computing Platform: An AIOps Solution,” ACM Trans. Softw. Eng.
Methodol. vol. 29, pp. 1-24, Apr. 2020

[2] Y. Dang, Q. Lin and P. Huang, “AIOps: Real-World Challenges and
Research Innovations,” in 2019 IEEE/ACM 41st Int. Conf. on Software
Engineering, Montreal, QC, Canada, pp. 4-5

[3] K.V.Vishwanath, N.Nagappan, “Characterizing cloud computing
hardware reliability,” in 2010 1st ACM symposium on Cloud
computing. New York, USA, pp. 193–204.

[4] A. T. Bouloutas, S. Calo and A. Finkel, "Alarm correlation and fault
identification in communication networks," IEEE Transactions on
Communications, vol. 42, pp.523-533, Feb-Apr 1994

[5] Y.S.Patel, R,Jaiswal and R.Misra, “Deep learning-based multivariate
resource utilization prediction for hotspots and coldspots mitigation in
green cloud data centers,” The Journal of Supercomputing, vol. 78, pp
5806–5855, May. 2022

[6] B.Xu and B. Lin, “Assessing CO2 emissions in China's iron and steel
industry: A dynamic vector autoregression model,” Applied Energy.,
vol 161, pp375-386, 2016

[7] B. Bussmann, J. Nys, S. Latré, “Neural Additive Vector
Autoregression Models for Causal Discovery in Time Series,” in 24th

International Conference Discovery Science, Halifax, NS, Canada,
October 11-13, 2021, pp.446-460

[8] B. Agung, S. Isti, “Hybrid vector autoregression-recurrent neural
networks to forecast multivariate time series jet fuel transaction price,”
in 2020 IOP Conference Series Materials Science and Engineering,
vol. 909, pp. 10, doi: 10.1088/1757-899X/909/1/012079

[9] F. Farahnakian, T. Pahikkala, P. Liljeberg and J, Plosila, “Energy

Aware Consolidation Algorithm Based on K-Nearest Neighbor
Regression for Cloud Data Centers,” in 2013 IEEE/ACM 6th Int. Conf.
on Utility and Cloud Computing, pp. 256-259

[10] T. Ban, R. Zhang, S. Pang, A. Sarrafzadeh, D. Inoue “Referential kNN
Regression for Financial Time Series Forecasting,” in 2013 Int. Conf.
on Neural Information Processing, pp. 601-608

[11] A. Geron, “Forecasting Multivariate Time Series”, in Hands-on
Machine Learning with Scikit-Learn, Keras TensorFlow 3rd. Oreilly,
2022, pp.620

[12] Q. Dang, M. Nhat and M. Yoo, “An Efficient Multivariate Autoscaling
Framework Using Bi-LSTM for Cloud Computing,” Applied Sciences,
vol. 12, pp. 3523-2543, Mar. 2022

[13] E. Patel, D.S. Kushwaha, “A hybrid CNN-LSTM model for predicting
server load in cloud computing,” The Journal of Supercomputing, vol.
78, pp. 1-30, May. 2022.

[14] H. Nkiama, S.Z.M. Said and M. Saidu, “A Subset Feature Elimination
Mechanism for Intrusion Detection System,” International Journal of
Advanced Computer Science and Applications, vol. 7, 2016 .

[15] K. Yan and D. Zhang, “Feature Selection and Analysis on Correlated
Gas Sensor Data with Recursive Feature Elimination,” Sensors and
Actuators B: Chemical, vol. 212, pp.353-363, June. 2015

[16] M. Alduailij, Q.W.Khan, M. Tahir, M. Sardaraz, M. Alduailij, F.
Malik, “Machine-Learning-Based DDoS Attack Detection Using
Mutual Information and Random Forest Feature Importance Method,”
Symmetry, vol. 14, 2022

[17] C.W.J.Granger, “Investigating Causal Relations by Econometric
Models and Cross-spectral Methods,” Econometrica, vol. 37, pp. 424-
438, Aug. 1969

[18] Y. Sun, J. Li, J. Liu, C. Chow, B. Sun, and R. Wang, “Using causal
discovery for feature selection in multivariate numerical time series,”
Machine Learning, vol. 101, pp. 377-395, Oct. 2015

[19] Y.Hmamouche, A.Casali, L.Lakhal, “A Causality Based Feature

Selection Approach for Multivariate Time Series Forecasting,” in The
Ninth International Conference on Advances in Databases,
Knowledge, and Data Applications, Barcelone, Spain, May. 2017

[20] M. Dong, Y. Kluger, “GEASS: Neural causal feature selection for high-

dimensional biological data,” in The Eleventh Int. Conf. on Learning
Representations, 2022

86

