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Abstract—The development of the cloud technology led to 
the rising interest in multi/hybrid cloud and emergence of 
artificial intelligence for IT operations(AIOps). The core 
elements of AIOps involve predicting how each metric of the 
data center will change in the future. Compared to general 
multivariate time-series prediction problems, causal 
relationships between each variable have a significant impact on 
cloud metric prediction. This paper focuses on the causality 
between variables, which partially arises when a specific event 
occurs in a cloud data center to achieve good predictive 
performance. The proposed model detects partial causality and 
sums it up again to extract key variables that explain the target 
variable well. Through this, variables with higher predictive 
performance than existing methods were found. We also 
propose a structure that improves the performance of the 
prediction model and minimizes inference time through a 
variable selection technique based on partial causality. By 
applying this to the actual operating cloud environment, it was 
proved that it can be effectively applied to the real world. 

Keywords—AIOps, Feature Selection, Granger Causality, 
Prediction 

I. INTRODUCTION 
In the on-premise(physical server based) development 

environment, the introduction of cloud including 
virtualization technology has led to many changes in the SW 
development environment. In particular, from the perspective 
of infrastructure managers, many companies and institutions 
began to adopt them because they were fascinated by the 
apparent benefits. The primary benefits of cloud technology  
include efficient network load response, quick recovery 
during failures, and flexible server capacity calculation. [1] 
Despite such exceptional features, infrastructure 
administrators have been required to understand and respond 
to not only simple servers but also the complex environment 
of the cloud system. Due to the limitations in responding to 
such situations based on individual administrator judgment or 
rule-based processes, the use of concept of artificial 
intelligence for IT operations (AIOps) has risen considerably. 

[2] This facilitates the integration of AI in IT operations with 
the overall aim of  optimizing data centers efficiently, 
increasing customer satisfaction, and improving development 
productivity. From a research perspective, algorithms that can 
appropriately calculate resource capacity and preemptively 
respond to failures are considered key elements.  

To maximize the performance of such algorithms, it is 
important to accurately analyze all sorts of data (metric, log, 
trace) collected from data centers and predict the values that 
they would show in the future. By predicting resource usage 
(metric), an appropriate capacity of resources can be 
calculated in accordance with the usage patterns for several 
months ahead. Furthermore, by predicting resource usage and 
potential log patterns, failure-related patterns can be 
preemptively detected and root causes can be analyzed, and 
this further shortens resolution times. However, because cloud 
technology has led to an increase in the complexity of 
environments, data pipelines have also become sophisticated 
and complex, requiring feature engineering that takes this into 
account. 

For feature engineering, like other multivariate data, the 
correlation between numeric variables has significant 
implications. [3] Various studies have been conducted, 
including the use of correlation between the server 
temperature and disk-related variables and failures, [4] or 
diagnosing the cause of failures using the correlation between 
alarms generated based on network-related variables. 
Altogether, this helps analyze multiple events occurring at the 
same time from various perspectives.  

Researchers have also focused on maximizing the 
performance of the target algorithm by analyzing the Granger 
causality between individual variables to leverage the 
characteristics of time-series data. [5] Patel et al. solved a 
multivariate time-series prediction problem involving CPU 
usage, memory usage, etc. using a Granger causality-based 
model.  
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Based on a detailed analysis of various studies, it was 
observed that when performing feature engineering using 
correlation, there are certain limitations in problems that 
require predicting future points, not just the current point in 
time. When Granger causality was used as an alternative, 
although causality could be effectively detected in some 
variables, there were many key variables wherein casualty 
could not be detected. In particular, while it is difficult to find 
clear correlations or causality with the target variable for most 
times, when a specific event occurs in the target variable, the 
variables that can play a significant role in triggering these 
events have been identified.  

Therefore, we inferred that partial Granger causality, 
which occurs in the case of a meaningful event in the target 
variable, could play an important role. We propose a partial 
Granger causality-based feature selection method at the time 
of event occurrence, which maximizes the prediction 
performance of various numerical data occurring in cloud data 
centers, and can also be applied to several other derivative 
functions where causality is important. 

Section 2 explains several key concepts associated with 
this research. Section 3 explains how we collected and 
preprocessed the data and implemented the proposed method. 
Section 4 presents the proposed technique and several other 
techniques into various prediction models, along with a 
detailed comparison of their performance. Finally, Section 5 
presents conclusions pertaining to limitations and implications 
that can be derived from this research, along with the 
directions for subsequent research. 

II. RELATED WORK 

A. Multivariate Prediction 
a) Vector Autoregression  

The Vector Autoregression(VAR) is an algorithm that 
examines the dynamic relationship between multivariate 
variables over time. [6] The VAR(p) formula between K 
variables is as follows.   =  +  +  + ⋯ +  +       (1) 

In Equation (1),  is a k-dimensional vector,  is a constant 
vector, and  …   is a coefficient matrix of k by k 
dimensions. Here,   represents an error term vector. [7] 
Bussmann et al. proposed a method to identify non-linear 
relationships in time series data, and their method was 
referred to as neural additive vector autoregression. This 
model uses a deep neural network to nonlinearly extract 
Granger causal influences from multivariate time series. [8] 
The VAR has also been combined with recurrent neural 
networks for multivariate time-series data prediction. 

b) KNeighbors Regressor 
The KNeighbors Regressor(KNN regressor) is an algorithm 
that derives the value to be predicted by calculating the 
average of the nearest neighbors. Given the input training 
dataset (X, y), (X, y), … , (X, y)  and the new input 
data point X, the output is the predicted value y for X. 

It measures the distance d(X, X)between data points X and X, and it further selects K nearest neighbors. At this point, 
after selecting the K nearest neighbors to X , the 

predicted value y  is calculated as the average of the 
dependent variable values of the K neighbors. 

 =  ∗ ∑                                                  
[9] Farahnakian et al. proposed a prediction method, referred 
to as the KNN-UP(KNN-based Utilization Prediction), 
which is a dynamic consolidation algorithm that turns off 
hosts with low usage and leaves only the minimum hosts 
based on current and future resource usage. They used the 
KNN algorithm based on past resource usage data to predict 
future resource demand. This is a representative example of 
using KNN regression to predict hosts with excessive or 
insufficient load. [10] Ban et al. used KNN regressor in 
multivariate time series data regression.  

 c) Long Short Term Memory 

[11] The Long Short Term Memory(LSTM) is an algorithm 
aimed at solving the vanishing gradient problem of Recurrent 
Neural Networks(RNNs). It has the characteristic that a 
single unit is composed of a cell, input gate, forget gate, and 
output gate, making it possible to control the retention of long 
and short-term memory. 

The formula for the input gate is as follows. 

i  =  σ(W  x + W  h  + b) 

The formula for the forget gate is as follows. 

f  =  σ(W x + W h  + b) 

The update of the cell state is as follows. 

g  =  tanh(Wx +  Wh  + b) 

The cell state is as follows. C  =  f  ∗  C  + i  ∗  g 
The output gate is represented as follows. 

o  =  σ(Wx + Wh   +  b) 

The computation for the hidden state is as follows. h  =  o  ∗  tanh(C) 

where,  i: Output of the input gate  f: Output of the forget gate g Output of the update cell state  C: Current cell state  o: Output of the output gate  h: Output of the hidden state  x: Input vector at the current time step,  h: Hidden state at the previous time step W, W, W, W: the weight matrices of each of the 
four layers for their connection to the input vector  x. W, W, W, W: the weight matrices of each of the 
four layers for their connection to the previous short-term 
state h. b, b, b, b: the bias terms for each of the four layers 
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*: Matrix multiplication 

[a, b]: Concatenation of vectors a and b 

   [12] Dang et al. proposed an efficient multivariate 
automatic scaling framework using Bi-LSTM in a cloud 
computing environment. They used the Bi-LSTM technique 
to predict future resource workloads. [13] Patel and 
Kushwaha attempted to predict the CPU utilization of cloud 
servers at continuous time steps using a prediction model 
method combining 1-dimensional Convolutional Neural 
Networks (1D CNN) and LSTM, referred to as the pCNN-
LSTM(parallel CNN-LSTM). 

B. Feature Selection 
a) Recursive Feature Elimination 

Recursive feature elimination (RFE) is an algorithm that 
sequentially removes the least important variables using 
feature coefficients after training on all features. [14] Nkiama 
et al. used a decision tree-based classifier as a recursive feature 
elimination technique to eliminate unrelated features with 
network traffic information and use only the related features, 
in the purpose of detecting intrusion. [15] Yan and Zhang 
proposed the SVM-RFE+CBR(support vector machine-
recursive feature elimination and correlation bias reduction) 
method, which adds linear and nonlinear characteristics to 
improve SVM-RFE under specific conditions where it 
becomes biased.  

b) RandomForest regressor - feature importance 
The Random Forest regressor is an algorithm based on the 

ensemble method of Random Forest, which combines 
multiple decision trees to make predictions and averages the 
results to obtain the final predicted value. In Random Forest, 
the feature importance is an indicator of the contribution of 
each feature to the prediction. It is calculated by averaging the 
impurity decreases across all decision trees. This decrease is a 
decrease in impurity before and after the node split which was 
based on a particular feature in each decision tree. [16] 
Alduailij et al. adopted a method for selecting features using 
Mutual Information and Random Forest Feature Importance 
methods for DDoS Attack Detection.  

c) Granger Causality Test 
[17]The Granger causality test is a statistical algorithm that 
evaluates the causal relationship between two variables in 
time series data.  

 Y  =  α + ∑(β ∗  Y)  +  ε               (1) 
 

 Y  =  α + ∑(β ∗  Y)  +  ∑(γ  ∗  X)  + ε   (2) 
 

In these two equations, if it is shown through the p-value that 
(2) is a better regression model than (1) by performing a test 
such as F test, it is stated that x “Granger causes” y. [18] Sun 
et al. proposed a method for feature selection in multivariate 
numerical time series problems based on the Granger 
causality method. They stated that the Granger causality 
method is significant because it selects suitable time windows 
at the same time it chooses the appropriate relevant features. 
[19] Hmamouche et al. developed an algorithm which  
considers the hidden relationship that may occur between 
variables when using Granger causality for feature selection. 
[20] Dong and Kluger applied the feature selection method 
using Granger causality to high-dimensional biological data. 

III. METHODOLOGY 

A. Data Collection 
To validate the feasibility of the proposed method, we 

prepared a virtualization environment based on OpenStack, an 
open-source platform. This environment consists a total of 34 
resources, including 5 physical machines (PM) used as 
Hypervisors and 29 virtual machines (VM) created on those 
Hypervisors. This environment, where various services are 
being developed, was used for various purposes such as Web 
Server, DB(Databases), Kubernetes Cluster, etc. To collect 
metric data from these resources, we used ELK Stack, which 
is an agent-based server data collection standard pipelines. 
Through this, we collected data related to CPU, Memory, 
Disk, and Network every 5 minutes, accumulating data for 
five months from March 11 to July 11, 2022.  

The collected data consists of a total of 89 variables. 
Among these, (A) CPU Utilization, (B) Memory Utilization, 
(C) Disk read bytes, (D) Disk write bytes, (E) Network in 
bytes, and (F) Network out bytes were selected as the target 
variables to be predicted. We seek to analyze the performance 
of the proposed algorithm based on a comparison with the 
performance of the multivariate time series prediction model 
that includes the remaining 83 data according to each variable 
selection technique.  

Table 1 Hierarchical Structure of Virtual Resources 
Physical  

Machine (PM) Virtual Machine (VM) # of instances 

Contrabass #1 

platform-haproxy-vmware 
5 

(include PM) 
platform-mkdocs 
platform-nexus 

platform-ptlmail 

Contrabass #2 

bigdata-elasticsearch-data-3 

28 

bigdata-elasticsearch-master-1 
bigdata-kafka-1 
bigdata-kafka-2 
bigdata-kafka-3 

bigdata-logstash-1 
bigdata-logstash-2 

cicd-harbor 
platform-consul-1 
platform-consul-2 
platform-consul-3 

platform-dns 
platform-etcd0 

platform-haproxy-lb 
platform-k8s-master0 
platform-k8s-worker0 
platform-k8s-worker1 
platform-k8s-worker2 
platform-k8s-worker3 
platform-k8s-worker4 
platform-k8s-worker5 
platform-keycloak-1 
platform-keycloak-2 

platform-nfs 
platform-ptldb-1 

bigdata-elasticsearch-data-3 
bigdata-elasticsearch-master-1 

Contrabass #3 - 1 

Contrabass #4 gu-dev-mariadb 2 
(incude PM) 

Contrabass #5 platform-dev-mariadb 3 
(include PM) platform-haproxy 

Total 39 
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B. Preprocessing 
In the case of VM units, we initially removed resources 

that were created midway and possessed a short data 
accumulation period. Additionally, we conducted further 
filtering based on the presence of minimal activity by 
checking the CPU usage and the number of processes running 
on the resource. 

For the metric units, we initially removed variables that 
had negligible variance and were close to Unique or 
Categorical variables. Furthermore, we eliminated variables 
that conveyed nearly the same meaning as the target variables 
and had a correlation coefficient close to one. 

 
Figure 1 ACF(Auto Correlation Function) Plot for setting 
lag values 

When selecting the lag value for the model, we utilized the 
average of the univariate standard ACF values of the overall 
target variables. We found that if the lag value was too large, 
the marginal increase in average accuracy according to the 
number of variables was minimal, and this resulted in a 
decrease in the feasibility of practical application in complex 
cloud environments where large volumes of data are collected 
in real time. Therefore, when applying the prediction model, 
we standardized the lag value to observe up to three steps back 
(15 minutes). 

C. Model Architecture 
The proposed algorithm is implemented in three major 

steps. The process consists of selecting the window to be 
analyzed through the Event Detector, checking the partial 
causality of the dependent variable through the Causality 
Detector, and deriving the final feature list by summing the 
partial causality found per window. 

  
Figure 2 Partial granger causality based feature selection 
algorithm 

1) Event Detector: From the entire time series, a window 
that is as large as the actual window size is extracted and the 
occurrence of events is checked based on basic statistics such 
as the variance of the target variable in that section. The 
window is then slid by the stride value to explore the next 
window. 

2) Causality Detector: By using the window list obtained 
through the Event Detector, we check for causality between 
the target variable and the remaining variables per section, 
based on Granger causality, and we store the p-values. 

3) Partial Causality Summation: By using the Granger p-
value matrix obtained through the Causality Detector, we 
sum each section and extract the variables that most 
frequently demonstrated causality. 

 
Figure 3 Granger causality performed In dependent 
variable y at the point where the event occurred (red), 
confirming that x1 has Granger causality (yellow) and 
that x2 does not 

The three main feature selection techniques are the filter 
method, wrapper method, and embedded method. The filter 
method uses statistical measurements to discover correlations 
between features and then selects the features with a high 
correlation coefficient (influence). 

The wrapper method is another approach to feature 
selection, where subsets of features are made iteratively to 
find the optimal feature combination. 

The embedded method performs feature selection during 
the learning process of a specific machine learning algorithm. 

We sought to test and compare various methods using the 
correlation coefficient method in the filter method, the RFE 
method with linear regression as the estimator in the Wrapper 
method, and the feature significances method which is 
embedded in the random forest regressor package in the 
embedded method.  

We used a total of three prediction models: KNN 
regressor, LSTM, and VAR. The KNN regressor was chosen 
because it is a relatively lightweight algorithm that generally 
offers good performance with default parameters, and it also 
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works well with non-linear problems. We chose the LSTM 
model due to its high compatibility with time series data and 
its ability to process sequences of diverse features. The VAR 
model was used because it is most suitable for autoregressive 
models that depend not only on independent variables but also 
on dependent variables. 

 

IV. EVALUATION 
To validate the performance of our algorithm and the 

comparison algorithms, we standardized the number of 
variables created by the feature selection results. We also used 
several prediction models to facilitate an objective 
comparison. For the predictive performance, we used two 
metrics: RMSE(Root Mean Squared Error) and MAE(Mean 
Absolute Error). 

The formula for RMSE is as follows. 

 =  ∑ ( − )   

The formula for MAE is as follows. 

 =  ∑ | − |   

The main parameters for algorithm training are the basic 
size of the window wherein partial Granger causality is 
checked and the stride, which determines the unit to slide the 
window. Considering both the simple prediction performance 
of the model and the training time for the algorithm, we set the 
stride equal to the window size and set the window size to 288 
(one day). 

Table 2 Performance of Feature Selection Algorithms by 
Error Index by Prediction Model 

 

According to the performance test of the feature selection 
techniques for each indicator and prediction model, our 
algorithm exhibited superior performance in most indicators. 
In each prediction model, both RMSE and MAE showed the 
same trend in performance ranking in the feature selection 
model. Also, VAR prediction model consistently exhibited the 
lowest RMSE values across all feature selection models than 
other prediction models. Especially, in VAR model, our 
model showed the most dramatic performance improvement. 
In VAR, our model showed a 67% performance improvement 
over the correlation-based model, which showed the worst 
RMSE. In KNN, our model showed 18% performance 
improvement and in LSTM it was 17%.   

 In addition, the prediction performance of individual 
target feature in each prediction model was compared for each 
variable selection algorithm. In this performance comparison, 

the Error Index was set to RMSE and the prediction model 
was set to KNN Regressor for efficient experiment. 

 

Table 3 Prediction Performance of Feature Selection 
Algorithms by y Variable 

Target 
Feature 

RFE 
Based RF Based Correlation Ours 

(A)CPU 
Utilization 0.03971 0.04503 0.03641 0.03541 

(B)Memory 

Utilization 
0.14830 0.15589 0.14962 0.08580 

(C)Disk Read 
Bytes 0.44087 0.43683 0.38216 0.38857 

(D)Disk 
Write bytes 0.33974 0.35384 0.35715 0.30134 

(E)Network 
In Bytes 0.31887 0.35764 0.31981 0.28382 

(F)Network 
Out Bytes 0.29410 0.32202 0.28984 0.26704 

 

From the comparison of the predictive performance for 
individual variables, it was observed while other model 
showed better performance for some variable, our 
experimental results generally showed superior performance. 
For example, although for Disk Read bytes variable  
correlation-based feature selection model showed better 
performance than ours by 0.00641, our model showed the best 
performance in all other variables. Specifically, for CPU 
utilization, our model showed 21% better performance than 
the model that showed worst performance, and 45% for 
memory utilization, 15% for Disk Write bytes, 20% for 
Network In Bytes, and 16% for Network Out Bytes. 

When our algorithm performed better, variables related to 
cpu steal or cpu iowait were selected as key variables in CPU 
Utilization. In addition, in terms of memory utilization, 
variables related to filesystem usage and disk write were 
selected as key variables. In terms of cpu utilization prediction 
performance, increasing values such as cpu steal or cpu iowait 
makes it difficult to perform other processes in the same 
physical machine or distribute cpu resources to multiple 
virtual machines, affecting the overall use of cpu. In terms of 
memory utilization prediction performance, as many of the 
vm's analyzed are related to data pipelines, if values such as 
filesystem usage or disk write increase, requests to save or 
query big data-related DB are processed and affect memory 
usage. In this way, it has been confirmed that variables 
selected through our algorithm can have important meaning 
even when using domain knowledge. 
 

V. CONCLUSION 

 We successfully minimized the load on the cloud system 
by minimizing the number of variables that must be collected 
through an effective feature selection technique. A simple 
reduction in the large volume of collected data to about a 
dozen produces many benefits in terms of network load and 
storage space in the data collection environment. In addition 
to maximizing the prediction model’s performance, we also 
improved the performance of techniques for cloud resource 

Error 
Index 

Predic
tion 

Model 

RFE 
Based 

RF 
Based Correlation Ours 

RMSE KNN 0.26360 0.27854 0.25583 0.22700 

MAE KNN 0.23394 0.24437 0.22323 0.19697 

RMSE LSTM 0.18197 0.17499 0.18066 0.15010 

MAE LSTM 0.32057 0.31441 0.31886 0.28593 

RMSE VAR 0.09989 0.12229 0.15955 0.05254 

MAE VAR 0.25013 0.25931 0.29000 0.15005 
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optimization and anomaly pattern detection, which are 
connected to the predictive model. 

However, a considerable volume of the data 
generated in cloud data centers, including unstructured data 
like logs and traces, often contain information related to 
causality. Therefore, using these data is essential to create 
functions that optimize the data center or respond effectively 
to failures. Accordingly, to create a root cause analysis model 
that detects the root causes of failures in cloud systems, our 
follow-up research will analyze causality including not only 
metric data but also logs and traces. We plan to apply this 
analysis to various models such as prediction and anomaly 
detection. 
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