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Abstract—Polyp segmentation is of great importance for the
prevention of colon cancer. Such a task remains highly chal-
lenging due to the high similarity of polyps to the background.
Models based on convolutional neural networks and transformer
have achieved promising results in this task, but their ability
to combine local and global information remains limited. In
this paper, we propose a novel network Dual Attention Cascade
Transformer (DACFormer) that effectively combines local and
global contextual information to suppress the effect of context
on target recognition. The proposed method adopt the cascade
structure of feature reuse, which effectively combines the se-
mantic information of features at all levels and further exploits
the potential of transformer and improves the generalization
ability of the model is effectively improved. We conducted tests
on four public datasets, CVC-ClinicDB, Kvasir, CVC-300, CVC-
ColonDB. The results show that our network outperforms the
current mainstream networks on the four benchmark datasets.

Index Terms—deep learning, transformer, polyp segmentation

I. INTRODUCTION

Colorectal cancer is one of the three most deadly cancers
in the world [1]. And polyps are an important cause of colon
cancer. Since polyps are very similar to human tissue, it
requires great human resources. The automatic segmentation
of polyps is a very rewarding task.

In medical image segmentation, most of the methods are
inspired by UNet [2] and use the design structure of encoder-
decoder. The existing methods can be divided into two
categories depending on the encoder, Convolutional Neural
Network (CNN) based and Transformer [3] based methods.
Due to the lack of good global modeling capability of CNNs,
CNN-based networks as encoders are dedicated to improve the
perceptual wildness of the network. For example, CaraNet [4]
uses Channel-wise feature pyramid module and axial attention
to mine multi-scale information. LDNet uses different variants
of self-attention mechanism to capture global information.

Transformer has good ability to model long-distance pixel
dependencies. But transformer tends to ignore the local rela-
tionships of pixels, resulting in loss of detailed information of
the results. So the network based on encoder as Transformer
is dedicated to improve the local information mining ability of
the network. SSFormer proposes an efficient scheme to mine
local information and combine contextual information using

convolutional and linear layers. But we think there is further
room to exploit the potential of Transformer. In this paper,
we propose a new Transformer-based network that efficiently
combines global and local information in contextual relation-
ships through an attention mechanism based on convolutional
networks. The contributions of this paper are summarized as
follows:

• A novel Transformer-based network for polyp segmenta-
tion is proposed. A special multiplexed cascade structure
is used to enable the network to obtain accurate localiza-
tion of the target and excellent generalization capability.

• Multi-scale information fusion attention and efficient
multi-scale attention are employed to effectively fuse
different scale features and adapt the network to polyp
targets of different sizes.

• Experimental results on four challenging benchmark
datasets show that the proposed DACFormer is better than
other counterparts and achieves the new state-of-the-art
performance.

II. METHODOLOGY

The overall structure is shown in Fig. 1, which is based
on the encoder-decoder structure. The encoder is based on
Transformer decoder, and the decoder includes the Multi-Scale
Information Fusion Attention Module and Efficient Multi-
Scale Attention Module. the four prediction maps generated
in the four stages of the decoder are under deep supervision.

A. Transformer Encoder

Transformer has excellent performance in computer vision
and requires variants. PVT v2 [5] uses convolution to give
the encoder features a pyramidal structure, enriching the scale
diversity of the features and achieving the best performance in
computer vision. We use PVT v2 as our encoder to obtain four
stages of coarse to fine multi-scale features Ei, i ∈ {1, 2, 3, 4}.
These features are used as input to the decoder to obtain the
final segmentation prediction map.

B. Multi-scale Information Fusion Attention Module

Deep features are rich in semantic information and shallow
features are rich in detailed information. In order to better
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Fig. 1. Schematic diagram of the proposed DACFormer and its main building blocks: (b) Multi-scale Information Fusion Attention Module (MIFA), (c)
Multi-scale Channel Attention Modul (MS-CAM), (d) Efficient Multi-Scale Attention Module (EMA).

combine semantic and scale inconsistent features [6], we use
a multi-level information fusion attention module. For the deep
features Ed, shallow features Es, we first use upsampling
to keep them at the same size. Then we enhance them by
summation to reach a consensus region. Then the local features
and global features are mined separately by two branches
of Multi-scale Channel Attention Module (MS-CAM). The
process follows the following equation:

Mo = Up(Ed)⊗ (1− (M(Up(Ed) + Es)))

+Es ⊗ (1 + (M(Up(Ed) + Es))),
(1)

M(E) = E ⊗ δ(L(E) +G(E)), (2)

L(E) = BN(PW2(δ(BN(PW1(E))))), (3)

G(E) = BN(Gap(δ(BN(Gap(E))))), (4)

where Up refers to upsampling. δ refers to Sigmoid function.
BN refers to Batch Normalization. PW refers to 1 × 1
convolution. Gap refers to global average pooling. ⊗ refers
to point wise multiplication.

C. Efficient Multi-Scale Attention Module

Attentional mechanisms have been widely noticed in com-
puter vision due to their flexible structural properties. How-
ever, past approaches have been implemented by downscaling
convolution, and inspired by [7], we reshape feature partial
channels into batch dimensions to achieve aggregated feature
space information and channel information without downscal-
ing. EMA divides the feature map into G sub-features across
channel dimensional directions for learning different semantic
information. It consists of three parallel branches, and the
first two branches employ two 1D global averaging pooling
operations to encode the channels along two spatial directions,

respectively. The 3 × 3 convolution is stacked in the third
branch to capture the multiscale feature representation. Con-
sidering the cross-space information aggregation approach,
precise location information is embedded into the EMA while
modeling remote dependencies. Contextual information at
different scales is integrated.

D. Loss Function
We adopt a multi-stage loss function with prediction maps

for all four stages under deep supervision. Our multi-stage loss
function is shown as follows:

Ltotal =
∑

Li, i ∈ {1, 2, 3, 4}, (5)

where the loss at each stage is a combination of f weighted
intersection over union (IoU) loss and weighted binary cross-
entropy (BCE) loss [8], which can be followed by the follow-
ing equation:

Li = LIoU (Pi, G) + LBCE(Pi, G), (6)

where Pi refers to the prediction mask of the i th stage of the
network, and G refers to the ground truth annotation.

III. EXPERIMENTS

A. Experimental Setup
We use mean Dice [9](mDic), mean IoU (mIoU), mean

absolute error (MAE), and E-measure [10] as evaluation
metrics to verify the performance of the proposed framework.
Specifically, we adopt Kvasir-SEG and ClinicDB datasets
to verify the feature modeling capabilities of the proposed
framework. And we test our network on unseen ColonDB
and Endoscene datasets to verify the generalization perfor-
mance. All experimental results are implemented using GPU-
NVIDIA GeForce RTX 3090TI.
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TABLE I
QUANTITATIVE RESULTS OF THE TEST DATASET KVASIR-SEG

method meanDic meanIoU meanEm mae
UNet 0.8183 0.7461 0.8807 0.0547
PraNet 0.8957 0.8422 0.9452 0.0268
ACSNet 0.8885 0.8312 0.9381 0.0338
UACANet 0.9111 0.8593 0.9596 0.0237
DCRNet 0.8954 0.8384 0.9392 0.0294
LDNet 0.9122 0.8578 0.9592 0.0227
Polyp-PVT 0.9129 0.8654 0.9589 0.0244
SSFormer 0.9149 0.8607 0.9567 0.0229
ColonFormer 0.9165 0.8639 0.9599 0.0243
Ours 0.9227 0.8748 0.9602 0.0226

TABLE II
QUANTITATIVE RESULTS OF THE TEST DATASET CLINICDB

method meanDic meanIoU meanEm mae
UNet 0.8226 0.7554 0.9133 0.0192
PraNet 0.9051 0.8548 0.9607 0.0093
ACSNet 0.9067 0.8545 0.9737 0.0132
UACANet 0.9111 0.864 0.9644 0.0078
DCRNet 0.9032 0.8494 0.9619 0.010
LDNet 0.921 0.8657 0.9769 0.0078
Polyp-PVT 0.9342 0.8878 0.9806 0.0063
SSFormer 0.903 0.8501 0.9634 0.0084
ColonFormer 0.9233 0.877 0.9726 0.0072
Ours 0.9405 0.8945 0.9863 0.0060

B. Experimental Results

This section compares the proposed method with past state-
of-the-art methods, including UNet [2], PraNet [11], ACSNet
[12], UACANet [13], DCRNet [14], LDNet [15], Polyp-PVT
[16], SSFormer [17], ColonFormer [18]. TableI and Table II
show the learning capabilities of the different models. We
can observe that our proposed method obtains the highest
performance for all four metrics on both datasets. For example,
in the CVC-ClinicDB dataset, as opposed to ColonFormer, our
method achieves a mean Dice score improvement of 1.72%,
mean IoU score improvement of 1.75%.

TableIII and Table IV show the generalization ability of
different models, and we can find that our model shows
excellent generalization ability relative to the past methods.
For example, in CVC-ColonDB dataset, as opposed to SS-
Former, our method achieves a mean Dice score improvement
of 2.76%, mean IoU score improvement of 2.3%. This verifies
our proposed conclusion that feature reuse can effectively
improve the generalization ability of the model for the model
with the backbone network as Transformer.

Fig. 2 shows the comparison of the visualization results
with different methods. We can clearly observe the precise
localization of our method for polyps of different shapes. Also
our method has a clearer boundary. As the image in the third
row shows, in the case of large polyps with complex textures,
our method is the only one with clear borders and no under-
segmentation or over-segmentation.

TABLE III
QUANTITATIVE RESULTS OF THE TEST DATASET ENDOSCENE

method meanDic meanIoU meanEm mae
UNet 0.7099 0.6269 0.8475 0.0221
PraNet 0.888 0.8217 0.9635 0.006
ACSNet 0.8687 0.7941 0.943 0.0089
UACANet 0.8768 0.8098 0.9483 0.007
DCRNet 0.8601 0.7907 0.934 0.0094
LDNet 0.861 0.7823 0.9419 0.009
Polyp-PVT 0.8855 0.8156 0.9591 0.0091
SSFormer 0.8918 0.8223 0.9686 0.007
ColonFormer 0.8921 0.8245 0.9612 0.0084
Ours 0.8967 0.8315 0.9646 0.0084

TABLE IV
QUANTITATIVE RESULTS OF THE TEST DATASET COLONDB.

method meanDic meanIoU meanEm mae
UNet 0.5037 0.4357 0.6914 0.0586
PraNet 0.7244 0.6529 0.8487 0.0351
ACSNet 0.7602 0.6802 0.8785 0.0355
UACANet 0.7477 0.6731 0.8635 0.0399
DCRNet 0.7712 0.6871 0.876 0.0427
LDNet 0.7796 0.6986 0.8905 0.0327
Polyp-PVT 0.8146 0.7306 0.9201 0.026
SSFormer 0.7985 0.7161 0.9008 0.0314
ColonFormer 0.8033 0.7248 0.8983 0.0359
Ours 0.8171 0.7391 0.9149 0.0288

TABLE V
ABLATION STUDY FOR DACFOMER ON THE CLINICDB DATASET

Setting meanDice meanIoU meanEm MAE
w/o MIFA 0.9363 0.8892 0.9833 0.0067
w/o EMA 0.9344 0.8872 0.9858 0.0069
w/o Feature reuse 0.9337 0.8856 0.9796 0.0090
Ours 0.9405 0.8945 0.9863 0.0060

C. Ablation Studies

To further validate the effectiveness of the components and
structure used in our network, we perform ablation experi-
ments. As shown in Table V, we remove a certain design
in the network and test their results on the CVC-ClinicDB
dataset. For example, w/o MIFA means removing the MIFA
module in the original network structure. We can observe that
removing any component or changing the structure negatively
affects the results of the network.

IV. CONCLUSION

In this paper, we propose a novel polyp segmentation
network targeting the backbone network as Transformer. We
use two attention mechanism based modules Multi-Scale In-
formation Fusion Attention Module and Efficient Multi-Scale
Attention Module to effectively fuse the features of encoder
network at all levels. Contextual information is fully combined
to effectively exploit the potential of Transformer. It is shown
that we obtain excellent results on four challenging datasets,
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Fig. 2. Visualization results of different methods

which provide new ideas for Transformer-based approaches
for polyp segmentation.
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