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Abstract—In this paper, we analyze the girth of QC-LDPC
codes constructed using a special type of Golomb rulers called
Bh sequences and a well-known multiplication table method. We
investigate the condition for the existence of 8-cycles and we are
able to count the exact number of 8-cycles in the QC-LDPC codes
using Bh sequences. The analysis focuses on the case h = 3. By
computer simulation, we show that the resulting codes for h = 3
have a better performance than those from general Golomb rulers
(non-B3 sequences) and have a comparable performance to the
modified LDPC codes from basegraph2 in 5GNR spec. As h
increases, the result could have higher girth but the performance
improvement is only marginal.

Index Terms—Golomb ruler, B3 sequence, QC-LDPC codes,
girth

I. INTRODUCTION

A Golomb ruler [2] is a set of s marks of integers
{g1, g2, ..., gs} with g1 < g2 < ... < gs such that

gj − gi (1)

are all distinct for all i < j. The distance L = gn − g1 is the
length of the above s-mark Golomb ruler. An s-mark Golomb
ruler is called optimal if it has the shortest length. One example
of an optimal 6-mark Golomb ruler is {0, 1, 8, 12, 14, 17} [8].
When {g1 = 0, g2, ..., gs−1, gs} is a Golomb ruler, replacing
gs with g > 2gs−1, in general, gives a new Golomb ruler [8].

A sequence a1 < a2 < ... < an is called Bh sequence [11]
if the h-fold sums

aj1 + aj2 + ...+ ajh (2)

are all distinct for all j1 ≤ j2 ≤ ... ≤ jh. Note that j1 =
j2, etc, and some or all of these jl’s can be the same. The
difference L = as − a1 is the length of the Bh sequence. A
Bh sequence is optimal if it is of the shortest length among
those with the same number of elements. A. W. Lam in [11]
tabulated some optimal Bh sequences they found. See Table
I.

A 3-free set [12] {a1, a2, ..., as} with a1 < a2 < ... < as
is a set of non-negative integers such that any three elements
ai < aj < ak do not satisfy the condition

2aj = ai + ak. (3)
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TABLE I
OPTIMAL Bh SEQUENCES [11]

h n Optimal sequences

3 3 {0, 1, 4}
4 {0, 1, 7, 11}

{0, 1, 8, 11}
5 {0, 1, 15, 18, 23}

{0, 1, 15, 20, 23}
6 {0, 2, 11, 26, 42, 45}
7 {0, 1, 7, 50, 59, 78, 82}

{0, 6, 7, 50, 59, 78, 82}
{0, 2, 23, 45, 72, 79, 82}

4 4 {0, 1, 11, 15}
{0, 2, 12, 15}

5 {0, 1, 24, 37, 41}
6 {0, 1, 17, 70, 95, 100}

5 5 {0, 1, 16, 66, 72}

Relations between 3-free sets, Golomb rulers and Bh se-
quences are described in [3], [8]. Every Golomb ruler is a 3-
free set but not conversely. An integer sequence is a Golomb
ruler if and only if it is a B2 sequence. Every Bh+1 sequence
is a Bh sequence but not conversely. The optimal 4-mark
Golomb ruler {0, 1, 4, 6} is an example of a B2 sequence but
not a B3 sequence, since

1 + 1 + 4 = 0 + 0 + 6.

A quasi-cyclic low-density parity-check (QC-LDPC) code
[4] is an LDPC code with quasi-cyclic property. With simple
encoding scheme and parallel decoding, QC-LDPC codes
can be used in wireless communications for forward error
correction. One can construct a QC-LDPC code using the
following algorithm [5]–[10]. Here, we use the following
notation:

• E = [e(i, j)] is a 3×s exponent matrix of integers
• I is the identity matrix of size P×P
• I(t) is the identity matrix I circularly shifted to the right
t times. It is called circular permutation matrix (CPM)
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Algorithm 1 Main Construction Platform [5]–[10]
Input: A positive integer P and two integer sequences

a = (a1, a2, a3) and b = (b1, b2, ..., bs)

Output: Binary 3P×sP matrix H

Step 1: Construct E = [e(i, j)] by e(i, j) = ai · bj for all i, j
Step 2: Construct H by replacing each element of E by an
appropriate CPM:

H =



I(e(1,1)) I(e(1,2)) · · · I(e(1,s))

I(e(2,1)) I(e(2,2)) · · · I(e(2,s))

I(e(3,1)) I(e(3,1)) · · · I(e(3,s))




Then, H as a parity check matrix defines a QC-LDPC code
of length sP .

Girth is the minimum length of cycles in Tanner graph
(bipartite graph) of a parity check matrix H . It is obvious
that any cycle in this case has even length. With some abuse
of notation, we say simply H has girth g when the Tanner
graph of H has girth g. According to [4], there exist cycles
of length 2c in H if and only if

c−1
l=0

ail(bjl − bjl+1
) ≡ 0 (mod P ) (4)

for some i0, i1, ..., ic−1 and j0, j1, ..., jc = j0 such that il ̸=
il+1 and jl ̸= jl+1 for 0 ≤ l < c. Thus, if E avoids the
condition for the existence of a cycle lengths up to 2c, the
resulting code from Algorithm 1 has girth 2(c+ 1).

Majdzade in [12] constructs the girth-8 QC-LDPC codes
using a = (0, 1, 2) and some 3-free sets as b in Algorithm 1.
Kim in [8] constructs the codes using a = (1, 2, 3) and some
Golomb rulers as b in Algorithm 1. This construction is further
analyzed by D. Kim in [9], [10]. It is proved in [8] that the
resulting code has girth 8 if the size P of CPM in Algorithm
1 is larger than twice of the length L of the Golomb ruler
when a = (1, 2, 3).

D. Kim in [9], [10] constructed the QC-LDPC codes
of girth 8 where a = (1, 2, 3) and b = (b1, b2, ..., bs)
is an integer sequence from the optimal 6-mark Golomb
ruler {0, 1, 8, 12, 14, 17} or other 6-mark Golomb rulers
{0, 1, 8, 12, 14, g6} with g6 = 29, 30, 31, ..., 99 in Algorithm
1. Here, the size P of CPM was set to be 200 for the length
1200. By simulation, the Eb/N0 at Frame Error Rate (FER)
10−3 are compared for all these g6 values as in Fig. 1.

There exists distinct performance degradation of the codes
with g6 = 50, 51, 58, 62, 64. In theses cases, the Golomb
rulers {0, 1, 8, 12, 14, g6} with g6 = 50, 51, 58, 62, 64 cover
the distance of P

4 = 50 as follows.

50− 0 = 51− 1 = 58− 8 = 62− 12 = 64− 14 = 50

But in all other cases, the Golomb rulers don’t cover the
distance of P

4 = 50. D. Kim in [9], [10] analyzed that this
difference makes the separation of the performance between
suggested codes as shown in Fig. 1. And they suspect that

Fig. 1. Performance of the half-rate codes from Golomb rulers [9]

Fig. 2. 8-cycle pattern in Lemma 1

the extra covered distance 50 above causes a very distinctive
group of 8-cycles which behave as stopping sets or trapping
sets [13].

This paper is organized as follows. In Section II, We prove
and verify some properties about the number of cycles of
the codes constructed using some Bh(h ≥ 3) sequences. In
Section III, we simulate and analyze the performance of the
codes in Section II. Finally in Section IV, we summarize and
conclude the paper.

II. SOME NEW CONSTRUCTION FROM Bh SEQUENCES

With some abuse of notation, we use the integer sequence
b = (b1, b2, ..., bs) and the s-mark Golomb ruler or Bh

sequence {b1, b2, ..., bs} interchangeably.
B3 sequences are special case of Golomb rulers. We

construct the QC-LDPC codes using a = (1, 2, 3) and B3

sequences as b in Algorithm 1. Eventually we will show
that the codes constructed using B3 sequences have better
performance than the codes constructed using general Golomb
rulers. By exactly counting the number of 8-cycles of the
resulting codes from B3 sequences, we check that the number
of 8-cycles is significantly decreased, and we are sure that this
is the main reason of the performance improvement.

When a = {1, 2, 3} is used in Algorithm 1, the pattern in
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Fig. 2 must causes 8-cycles for any u < v since
3∑

l=0

(e(il, jl)− e(il, jl+1))

= u− v + 2v − 2u+ 3u− 3v + 2v − 2u = 0.

Note that Fig. 2 shows two columns of E from Algorithm 1.
The pattern in Fig. 2 causes 8-cycles P times which are all
distinct, since every 1 within a CPM causes a cycle and there
are P 1’s in it. Since this pattern occurs whenever 2 columns
are chosen from s columns of exponent matrix, this type of
8-cycles appear

(
s
2

)
× P times.

Lemma 1: Assume that a = (1, 2, 3) is used with any integer
sequence b in Algorithm 1. The 8-cycles in Fig. 2 must appear(
s
2

)
×P times. Therefore, the total number 8-cycles is at least

this much in H .

Lemma 2: Assume {b1, b2, ..., bs} is a length-L Bh se-
quence. If P > hL, then h-fold sums from the sequence
b = (b1, b2, ..., bs),

bj1 + bj2 + ...+ bjh

are all distinct mod P for any j1 ≤ j2 ≤ ... ≤ jh.
Proof: Any h-fold sum can not be more than hL.

Lemma 3: Assume that a = (1, 2, 3), any integer sequence
b = (b1, b2, ..., bs) and P ×P CPMs are used in Algorithm 1.
Then, the condition for the existence of an 8-cycle becomes

bj0 + bj1 − bj2 − bj3 ≡ 0 (mod P ) (5)

or
bj0 − bj1 + bj2 − bj3 ≡ 0 (mod P ) (6)

or
bj0 − 2bj1 + 2bj2 − bj3 ≡ 0 (mod P ) (7)

or
2bj0 − 2bj1 + 2bj2 − 2bj3 ≡ 0 (mod P ) (8)

for some j0, j1, j2, j3 such that j0 ̸= j1, j1 ̸= j2, j2 ̸= j3 and
j3 ̸= j0.

Proof: The condition for the existence of an 8-cycle in
(4) becomes

3∑
l=0

ail(bjl − bjl+1
) ≡ 0 (mod P ) (9)

for some i0, i1, i2, i3 and j0, j1, j2, j3, j4 = j0 such that il ̸=
il+1 and jl ̸= jl+1 for 0 ≤ l < 4. Suppose we arrange all
conditions for the existence of an 8-cycle by substituting 1,
2, 3 for il’s in possible combinations. The rotations of il’s
(il → il+1) make any difference in the resulting expressions.
Therefore, we don’t need to consider any cyclic permutations
of il’s and it is enough to consider the following six cases of
(i0, i1, i2, i3):

(1, 2, 1, 2), (1, 2, 1, 3),

(2, 3, 2, 3), (2, 3, 2, 1),

(3, 1, 3, 1), (3, 1, 3, 2).

(10)

From the first case of (i0, i1, i2, i3) = (1, 2, 1, 2) and since
a = (a1, a2, a3) = (1, 2, 3), the condition (9) becomes

bj0 −bj1 +2bj1 −2bj2 +bj2 −bj3 +2bj3 −2bj0 ≡ 0 (mod P )

which reduces to

bj0 − bj1 + bj2 − bj3 ≡ 0 (mod P )

as the condition (6).
From (i0, i1, i2, i3) = (2, 3, 2, 1), we get the condition

2bj0−2bj1+3bj1−3bj2+2bj2−2bj3+bj3−bj0 ≡ 0 (mod P )

which reduces to

bj0 + bj1 − bj2 − bj3 ≡ 0 (mod P )

as the condition (5).
Similarly, we can get the remaining conditions from the

other cases in (10).

Theorem 1: Assume that the sequence a = (1, 2, 3), b =
(b1, b2, ..., bs) and P ×P CPMs are used in Algorithm 1. Let
b be a B3 sequence of length L. Then, the resulting QC-LDPC
code has girth 8 and 8-cycles appear exactly

(
s
2

)
×P times if

P > 4L in general or if P > 3L when P is odd.
Proof: Since P > 2L and B3 sequence is a Golomb ruler,

the code has girth 8 [8].
We will show that all other 8-cycles are impossible in H

except for the special type of 8-cycles in Fig. 2. From Lemma
1, such an 8-cycle appears exactly

(
s
2

)
× P times inevitably.

We note that this pattern of an 8-cycle corresponds to the
condition (5) with j0 = j2 and j1 = j3.

We now distinguish the following 3 remaining cases from
Lemma 3:
(A) 8-cycles from (5) except for j0 = j2 and j1 = j3
(B) 8-cycles from (6) or (7)
(C) 8-cycles from (8)

For (A) and (B), it is straightforward that the condition
cannot be satisfied, since B3 sequence is used with P > 3L,
and the conditions (5), (6), or (7) check whether some 2-fold
sums or 3-fold sums repeat in the B3 sequence.

For (C), we use the following relation.

2bj0 − 2bj1 + 2bj2 − 2bj3 ≡ 0 (mod P )
⇔ bj0 − bj1 + bj2 − bj3 ≡ 0 (mod P

gcd(2,P ) )

If P is odd, then gcd(2, P ) = 1, and the above becomes

bj0 − bj1 + bj2 − bj3 ≡ 0 (mod P ),

which is the condition (6).
If P > 4L and P is even, the above becomes

bj0 − bj1 + bj2 − bj3 ≡ 0 (mod P/2).

Since P/2 > 2L and B3 sequence is a Golomb ruler, it
is straightforward that the condition cannot be satisfied by
Lemma 2.

Tables II and III show the number of cycles when the codes
are constructed using an optimal Golomb ruler, an optimal B3
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sequence. P = 181 = 4 · 45 + 1 is used for Table II and an
odd P = 137 = 4 · 45 + 2 is used for Table III. In both case,
the code from B3 sequence has not only less 8-cycles but also
less 10-,12-cycles than the code from the Golomb ruler.

TABLE II
COMPARISON OF THE NUMBER OF CYCLES (P = 181)

Golomb Ruler [8] B3 sequence [11]

{0, 1, 8, 12, 14, 17} {0, 2, 11, 26, 42, 45}

4-cycles 0 0

6-cycles 0 0

8-cycles 5249 2715 =
(6
2

)
× 181

10-cycles 27512 3982

12-cycles 255572 102989

TABLE III
COMPARISON OF THE NUMBER OF CYCLES (P = 137)

Golomb Ruler [8] B3 sequence [11]

{0, 1, 8, 12, 14, 17} {0, 2, 11, 26, 42, 45}

4-cycles 0 0

6-cycles 0 0

8-cycles 3973 2055 =
(6
2

)
× 137

10-cycles 20824 4110

12-cycles 193444 97681

Similarly, we can construct the girth-10 code using B5 se-
quences and the girth-12 code using B6 sequences as following
Theorem 2. But we omit the detailed proof of Theorem 2 in
this paper due to space limitation.

Theorem 2: Assume that the sequence a = (1, 2, 4), b =
(b1, b2, ..., bs) and P ×P CPMs are used in Algorithm 1. Let
b be a Bh sequence of length L. Then the resulting QC-LDPC
code from Algorithm 1 has 1) girth at least 10 if h = 5 and
P > 5L and P is not a multiple of 3, 2) girth 12 if h = 6
and P > 6L.

III. SIMULATION

In this section, we simulate the FER performances of
the QC-LDPC codes from various Golomb rulers. We also
simulate the FER performances of the modified LDPC codes
from 5GNR basegraph2 [1] of similar length and rate for com-
parison. Assuming BPSK modulation and AWGN channel, we
use sum-product decoding with maximum 50 iterations.

Figure 3 shows the FER performances of the codes of P
= 137. The code from optimal B3 sequence shows additional
coding gain about 0.6 dB over the code from optimal Golomb

Fig. 3. Performance of the half-rate codes of length 822 using P = 137

Fig. 4. Performance of the half-rate codes of length 1086 using P = 181

ruler and about 0.1 dB difference with 5GNR LDPC code of
length 880, all at FER 10−3.

Figure 4 shows the FER performances of the codes of P
= 181. The code from optimal B3 sequence shows additional
coding gain about 0.7 dB over the code from optimal Golomb
ruler and almost same performance with 5GNR LDPC code
of length 1120, all at FER 10−3.

We have checked by computer the performance of the codes
from Theorem 2 but confirmed some marginal improvement
over the code from general Golomb rulers but not as good
as those from 5GNR spec, and we skip the curve due to the
space limitation.

IV. CONCLUDING REMARKS

In this paper, we constructed and analyzed the QC-LDPC
codes using various Golomb rulers in Algorithm 1. From the
conditions for the existence of an 8-cycle, we proved that using
B3 sequence of proper length in the construction makes the
codes have girth 8 and leaves 8-cycles of some special case
only. We simulated the performance of the codes from B3
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sequences and checked that it has similar performance with
the modified LDPC codes from 5GNR basegraph2.

We now have examples of optimal Bh sequences only
from [11]. Some more investigation on the constructing these
sequences could be an interesting future work.

However, it is noted that as h increases, the length of an
optimal sequence increases rapidly, and it makes the rate of
the resulting code to be low, and it could be much lower than
the half. Therefore, we may have only a marginal interest of
using Bh sequences with large h in this construction for QC-
LDPC codes. This could be another problem to be solved for
the design of QC-LDPC codes of various rates (high or low)
using this technique.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) Grant by the Korean Government through
Ministry of Sciences and ICT (MSIT) under Grant RS-2023-
00209000.

REFERENCES

[1] 3GPP TS 38.212, NR; Multiplexing and Channel Coding (Release 17),
2022.

[2] G. S. Bloom and S. W. Golomb, ”Applications of numbered undirected
graphs,” Proceedings of the IEEE, 65(4), pp. 562-570, 1977.

[3] A. Dimitromanolakis, “Analysis of the Golomb Ruler and the Sidon Set
Problems, and Determination of Large, Near-Optimal Golomb Rulers
(Master’s thesis),” Department of Electronic and Computer Engineering,
Technical University of Crete, 2002.

[4] M. P. C. Fossorier, ”Quasicyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Transactions on Information
Theory, 50(8), pp. 1788-1793, 2004.

[5] I. Kim and H.-Y. Song, “A simple construction for qc-ldpc codes of
short lengths with girth at least 8,” 2020 International Conference on
Information and Communication Technology Convergence (ICTC), pp.
1462–1465, 2020.

[6] I. Kim and H.-Y. Song, “Some new constructions of girth-8 qc-ldpc
codes for future gnss,” IEEE Communications Letters, vol. 25, no. 12,
pp. 3780–3784, 2021

[7] I. Kim, T. Kojima and H. -Y. Song, ”Some Short-Length Girth-8 QC-
LDPC Codes From Primes of the Form t2 + 1,” IEEE Communications
Letters, vol. 26, no. 6, pp. 1211-1215, 2022

[8] I. Kim and H.-Y. Song, “A construction for girth-8 QC-LDPC codes
using Golomb rulers,” Electronics Letters, 58(15), pp. 582-584, 2022.

[9] D. Kim, I. Kim, H. Cho, H. Choi and H. -Y. Song, ”Performance
Analysis of QC-LDPC codes constructed by using Golomb rulers,” 2022
27th Asia Pacific Conference on Communications (APCC), pp. 301-302,
2022.

[10] D. Kim, “Performance analysis and new construction of QC-LDPC
codes from Golomb ruler (Master’s thesis),” Department of Electrical
and Electronic Engineering, The Graduate School Yonsei University,
2023.

[11] A. W. Lam and X. Duan, ”Optimal Bh(n) sequences,” Electronics
Letters, 25(6), pp. 477–478, 1989.

[12] M. Majdzade and M. Gholami, “On the Class of High-Rate QC-LDPC
Codes With Girth 8 From Sequences Satisfied in GCD Condition,” IEEE
Communications Letters, 24(7), pp. 1391-1394, July 2020.

[13] A. Price and J. Hall, ”A survey on trapping sets and stopping sets,”
arXivpreprint arXiv:1705.05996, May 2017.

110


