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Abstract—In this paper, we propose a new type of deep learning
(DL)-based localization for the urban NLoS scenarios, termed
Intelligent Localization via Spatial Information Embedding (I-
LOSIE). In I-LOSIE, we train the deep neural network (DNN)
to identify the location of the wireless device by using the
combination of the uplink measurements and the position and
size of the obstacles (we call these spatial information). From the
extensive numerical evaluations, we show that the proposed I-
LOSIE achieves the high-resolution localization in the wireless
environments with high density of obstacles..

I. INTRODUCTION

With the advent of the internet of things (IoT) era, location
awareness, providing the ability to identify the location of
sensor, machine, vehicle, and wearable device, has become one
of key ingredients for the hyper-connected society [1]. This
new trend has promoted the emergence of new killer applica-
tions, such as autonomous driving, smart factory/monitoring,
drone delivery, and remote surgery, that require an extremely
precise localization capability down to several centimeters for
the operation [2]–[4].

Traditionally, trilateration-based techniques such as the
global navigation satellite systems (GNSS) have been widely
used for the user localization [5]–[7]. In these approaches,
the distances between the user and sensor nodes are obtained
from the signal measurements such as time-of-arrival (ToA)
and received signal strength indicator (RSSI). By identifying
the intersection point of the spheres centered at the sensor
nodes, the position of the target device is estimated. While this
approach is easy and straightforward, it does not perform well
when the wireless signal is propagated through the non-line-
of-sight (NLoS) paths. For instance, when the transmit signal
is reflected by a scatterer in the middle of propagation, the
measured distance becomes longer than that of the LoS path
(i.e., actual distance). In this case, the volume of the sphere
becomes unduly large. This increases the size of intersection
area in the trilateration-based techniques, resulting in a high
positioning error.

An aim of this paper is to propose a novel localization
scheme for the NLoS propagation scenarios using deep learn-
ing (DL). We employ DL to extract the geometric relation
between the obstacles/scatterers and the blockages/reflections
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Fig. 1. An illustration for narrowband uplink transmission scenario.

determining the type of signal propagation (i.e., LoS or
NLoS). Specifically, in our framework, henceforth referred to
as Intelligent Localization via Spatial Information Embedding
(I-LOSIE), the deep neural network (DNN) is trained to find
out the location of the user based on two inputs; 1) the position
and size of the obstacles (i.e., spatial information) and 2)
the uplink signal measurements (i.e., channel information).
By extracting the propagation characteristics (e.g., directions
of signal reflection, areas where the blockage occurs), I-
LOSIE can identify the type of signal propagation (i.e., LoS
or NLoS) and the position where the user is most likely to
exist, achieving a high-resolution localization.

II. UPLINK SYSTEM MODEL FOR LOCALIZATION

We consider a narrowband uplink transmission scenario
where a base station (BS) equipped with NT = Nx × Ny

uniform planar array (UPA) antennas serves a single-antenna
mobile (see Fig. 1). In this setup, the received pilot signal
y ∈ CNT×1 is given by

y = hs+ n, (1)

where h ∈ CNT×1 is the uplink channel vector from the
mobile to the BS, s ∈ C is a transmitted pilot symbol, and
n ∈ CNT×1 is the additive Gaussian noise (n ∼ CN (0, σ2

nI)).
As for the channel model, we consider a geometric channel

model where the uplink channel vector h is expressed as

h =

Np∑
i=1

αie
−j2πfskτia(θi, ϕi), (2)
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where Np is the number of propagation paths, αi is complex
gain of the i-th path, θi and ϕi are azimuth and elevation
angles for the i-th path, and τi is the path delay of the i-th
path. Also, a(θ, ϕ) ∈ CNT×1 is the array response of BS given
by

a(θ, ϕ) =
1√
NT

[1 · · · e−jπ(Nx−1) cos θ sinϕ]T

⊗ [1 · · · e−jπ(Ny−1) sin θ sinϕ]T. (3)

We assume that the AoAs {θ, ϕ} and distance d = cτ of the
propagation path can be accurately obtained from y, where c
is the speed of light1. Based on the assumption, we solve the
localization problem that finds out the position of the mobile
pm = [x, y, z] from the AoAs {θ, ϕ} and distance d.

III. DEEP LEARNING-BASED 3D LOCALIZATION

The primary goal of I-LOSIE is to estimate the 3D location
of a mobile from the channel information and spatial infor-
mation. Major benefit of I-LOSIE is to exploit the position
and size of the obstacles (we call these spatial information).
By extracting the signal propagation geometry (e.g., directions
of signal reflection, areas where the blockage occurs) from
the spatial information, I-LOSIE can distinguish the type of
signal propagation (i.e., LoS or NLoS) and also identify the
3D position of the user accurately. Specifically, we exploit the
fully-connected (FC) network consisting of multiple hidden
layers to learn the input-output mapping g [10]:

p̂m = g(r1, r2, · · · , rN , s1, · · · , sK ; δ), (4)

where rn = [dn, θn, ϕn] is the set of distance and angles of n-
th path (i.e., channel information) and δ is set of weights and
biases. Also, sk = [xk, yk, wk, lk, hk] is the set of the center
coordinates (xk, yk) and width wk, length lk, and height hk

of the k-th obstacle (i.e., spatial information).

A. I-LOSIE Architecture

Main goal of I-LOSIE is to find out the exact location of the
user from the spatial information s and channel information
r. To this end, we train a DNN consisting of multiple FC
layers. Specifically, in I-LOSIE, we first construct the vector
x(0) = [rT

1, · · · , rT
N , sT

1, · · · , sT
K ]T ∈ R(3N+5K)×1 by con-

catenating the N multipath inputs and K spatial inputs. By
using x(0) as the input, the first FC layer generates the output
z(0) ∈ RE×1 as

z(0) = W(0)x(0) + b(0), (5)

where W(0) ∈ RE×(3N+5K) and b(0) ∈ RE×1 are the weight
matrix and the bias vector, respectively. After passing through
the FC layer, the batch normalization is applied to alleviate
the large variation of the inputs caused by the different
channel state and noise level [11]. To be specific, the j-th

1For example, we can accurately extract {θ, ϕ} and d from y by using the
CS-based technique that converts the angle and path delay estimation problem
to the support identification problem [8], [9].

element of mini-batch B = [z(0),1, · · · , z(0),b] after the batch
normalization is

z̃
(0),j
i = γ


z

(0),j
i − µB,i

σ2
B,i


+ β, i = 1, · · · , E, (6)

where µB,i = 1
b

b
j=1 x

(0),j
i and σ2

B,i = 1
b

b
j=1(x

(0),j
i −

µB,i)
2 are mini-batch-wise mean and variance, respectively,

γ is the scaling parameter, and β is the shifting parameter.
After the batch normalization process, the output vector ž(0) =
fReLU(z̃

(0)) is generated by passing through the rectified linear
unit (ReLU) layer fReLU = max(0, x).

Then, the output vector ž(0) passes through L series of
FC layers, batch normalization layers, and activation layers,
generating the output vector žL. Finally, using žL, we obtain
the location estimate of the mobile user p̂m = [x̂, ŷ, ẑ]:

[x̂, ŷ, ẑ] = Wf žL + bf , (7)

where Wf and bf are weight and bias.

B. Loss Function Design and I-LOSIE Training

In the training phase, we update the network parameters in
the direction of minimizing the loss function Lδ . To obtain the
optimal mapping g∗ from the I-LOSIE training, we need to
compare the 3D location estimate p̂m against the true location
pm. The loss function Lδ quantifying the difference between
the true and estimated locations is given by the mean squared
error (MSE):

Lδ = ∥p̂m − pm∥22. (8)

It is worth mentioning that the proposed I-LOSIE is the
data-driven approach. This means that the DNN should be re-
trained in the new wireless environments where the distribution
of the input-output pairs is dearly distinct from the original
dataset. For example, when the communication environment
changes from the indoor to outdoor, the average communica-
tion distance can vary (e.g., 4m in indoor and 9m in outdoor)
so that I-LOSIE trained in the indoor environment might
not properly capture the wireless geometry of the outdoor
environment [12]. To address the issue, we exploit the meta
learning, a technique to train a model on various tasks such
that it can solve new task using only a small number of training
samples. In short, meta learning is a special training technique
to obtain the initialization parameters of DNN using which one
can easily and quickly learn the desired function (in our case,
the mapping function g) with a few training samples.

Overall procedure of the I-LOSIE training is as follows.
First, we perform the meta learning to obtain the initializa-
tion parameters. We then update the network parameters to
perform the fine-tuning of DNN such that the trained DNN
approximates the mapping g for the desired wireless envi-
ronments (see Fig. 2). To be specific, the network parameter
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Fig. 2. Training process of I-LOSIE including the detailed structure.

update process in the meta learning phase using M datasets
{D1, · · · , DM} is [13]

ψDi,t = δt−1 − α∇δLDi

δt−1
, (9)

δt = δt−1 − β∇δ

M∑
i=1

LDi

ψDi,t
, (10)

where δt is the set of network parameters updated at t-th
step and ψDi,t is the set of network parameters temporally
computed with dataset Di at t-th step. Also, LDi is the loss
function of the DNN for i-th dataset Di. In the fine-tuning
phase, we utilize δ as the initial parameter of I-LOSIE. Since
all we need in the fine-tuning is to learn the distinct features
of DM+1 unextracted from the meta learning, we can greatly
reduce the training overhead.

IV. SIMULATIONS AND DISCUSSIONS

A. Simulation Setup

In our simulations, we consider the rectangular outdoor
environment of 140m×140m. We generate 4 different datasets
{Di}4i=1 for meta learning, each of which corresponds to
different obstacle displacement. For all environments, we set
the height of the BS to 10m and locate the BS at the center of
the site. User devices are uniformly distributed in the service
area. For the I-LOSIE structure, we employ the FC network
consisting of 6 FC layers. Each hidden layer consists of 1, 024
hidden units. In the meta learning phase, we train I-LOSIE for
110, 000 iterations using 10, 000 samples.

B. Experiment Results and Discussions

In Table I, we show the average positioning error of the
I-LOSIE with and without the spatial information. In this
simulation, we use 1, 000 samples for the fine-tuning in the

TABLE I
LOCALIZATION ERROR IN TERMS OF MAE FOR THE SINGLE PATH AND
MULTIPATH SCENARIOS WITH AND WITHOUT SPATIAL INFORMATION s.

Average (m) single path multipath
Without spatial info. 1.421 1.198

With spatial info. 0.811 0.536

new environment. We observe that the proposed I-LOSIE
achieves the localization performance gain when the spatial
information is given as the additional input. For example,
we see that the average localization error is decreased by
about 43% for the single path and 55% for the multipath,
respectively. This is mainly because the model can resolve
the ambiguity of the LoS/NLoS propagation by utilizing the
additional blockage and reflection information given from the
spatial input.

Fig. 3 depicts MAE performance of the I-LOSIE trained
with and without meta learning process as a function of the
number of samples used for fine tuning. As shown in Fig. 3,
MAE of the I-LOSIE without meta learning is significantly
higher than that of I-LOSIE with meta learning. For example,
when the number of samples is 6, 700, the MAE of I-
LOSIE without and with meta learning is 1.95m and 0.54m,
respectively. This is mainly because the I-LOSIE with meta
learning is pre-trained with sufficient amount of data to learn
the essential knowledge needed for the NLoS localization (e.g.,
use of spatial information in the NLoS scenario in calculating
the signal reflection).

V. CONCLUSION

In this paper, we proposed a novel DL-aided localization
technique called I-LOSIE for the NLoS propagation scenarios.
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Fig. 3. MAE with respect to the number of fine-tuning samples.

Key idea of the proposed I-LOSIE is to identify the type of
signal propagation by extracting the geometric information
(e.g., direction of signal reflection) from the spatial data
describing the size and position of obstacles. By training DNN
via meta learning, we obtain I-LOSIE that can achieve an
accurate localization using only a small number of training
samples. From the extensive simulations in the various NLoS
propagation scenarios, we confirmed that the proposed I-
LOSIE is applicable for the high-resolution localization in the
wireless environments with high density of obstacles.
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