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Abstract—A growing body of research has been dedicated
to investigating systems for quickly detecting and pinpointing
the location of projectiles aimed at a target. Various studies
and products have demonstrated the feasibility of predicting the
point of origin for a shot. However, existing tools come with
limitations and inconveniences. This study aims to introduce a
model that achieves highly accurate and low-latency tracking of
shot origins during long-range shooting, free from constraints,
by incorporating LoRa, computer vision, and sound detection
technologies. The proposed system commences with an initial
photograph captured by a camera positioned near the target.
Whenever the adjacent acoustic sensor detects a fired projectile,
the camera captures a new image, triggering the Raspberry Pi
located beside the target to calculate the coordinates of the shot
by comparing it with the previous image. When compared to the
actual bullet mark, the predicted bullet mark’s error remains
under 1 mm. This paper’s proposal showcases accuracy suitable
for integration into military intelligence training systems, offering
a cost-effective solution.

Index Terms—LoRa, Computer vision, Sound detection

I. INTRODUCTION

In 2017, the Small Arms Survey found that the United States
had 120.5 firearms per 100 residents, surpassing the population
itself [1]. The National Rifle Association hosts over 11,000
shooting tournaments and 50 national championships annually,
catering to all ages. Target shooting’s popularity extends to the
military, where precision matters. Despite dedicated military
training, target verification remains tedious, involving manual
marking and comparison. Proposed research aims to streamline
this process and holds promise in addressing the issue.

ShotMarker constitutes a software application tailored for
the F-class shooting championship, an event conducted exclu-
sively in the prone position spanning distances from 275 m
to 915 m [2]. Nonetheless, this system is not devoid of com-
plexities. Firstly, external factors such as wind significantly
impact its precision. Although the typical error under ideal
conditions rests between 2 to 3 mm, this rate of inaccuracy

can increase when unfavorable weather prevails during shoot-
ing. Secondly, the system is confined to supersonic bullets.
In essence, if a firearm employs subsonic ammunition, the
functionality of ShotMarker might falter. This paper introduces
a new approach to the realm of projectile mark detection
systems. The proposed system attains impressive accuracy
while circumventing a multitude of environmental constraints.
Notably, unlike ShotMarker, which is restricted to subsonic
projectiles, this system breaks free from bullet type limitations.
It accomplishes this by deducing shooting coordinates through
a comparison of images before and after firing. This distinctive
attribute grants versatility in accommodating various projectile
types within the system. Similar to ShotMarker, the approach
incorporates Long Range (LoRa) network technology to facil-
itate long-distance shots. The proposed methodology involves
capturing an initial image to serve as a reference, followed
by the transmission and superimposition of coordinates onto
this reference image. Despite slower transmission pace of
LoRa, our system prioritizes coordinate data over image data,
mitigating the impact on transmission speed and diminishing
packet loss concerns.

In outdoor tests, potential packet loss due to environmental
factors is acknowledged. To ensure reliable packet delivery, the
Multi-Packet LoRa (MPLR) algorithm is used, countering such
losses. MPLR enhances LoRa’s appeal due to extended battery
life, long-range communication, and cost-effective equipment
[3]. The system’s distinctive feature is its reset after each bullet
shot, facilitating swift bullet grouping calculation. Demonstrat-
ing precision, it’s well-suited for military intelligence training
systems.

II. RELATIVE WORKS AND MOTIVATION

The suggested study comprises three primary technologies:
LoRa, computer vision, and sound detection.
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Andreea developed an innovative electronic archery scor-
ing system that involves calculating the variance between
successive images using dual cameras [4]. Zin et al. took
this approach further by not only employing background
subtraction but also utilizing frame differences between the
current frame and the two immediate frames to identify new
arrows [5]. In contrast to [4], a critical aspect to address is the
optimal selection of thresholds for image segmentation. They
introduced dynamic thresholding after image binarization, uti-
lizing a total of two threshold values. The integration of color-
based background modeling, gray-level frame differences, and
dynamic thresholding collectively contributes to precise target
and arrow detection.

The effectiveness of Park et al.’s approach in accurately
processing outdoor images is hindered by environmental con-
ditions like brightness [6]. This research centers on utilizing
YOLO V5 to concentrate on the target, detecting a gunshot
based on target alterations. Despite the persistent focus on the
target by the camera, challenges persist in detecting gunshots
amidst diverse backgrounds.

Li et al. discuss the improvement of low illumination images
[7]. In their work, the RGB color space was transformed
into YUV color space to extract illuminance and reflection
elements. They further isolated the illuminance and reflection
components using homomorphic filtering to preserve image
edges and minimize noise. Global adaptive gamma correction
was then employed to adjust image brightness, resulting in the
enhancement of low illumination images. This study employed
a similar approach, enhancing outdoor images through gamma
correction to extract the target.

As shown in [8], there is a case of sound classification
using the Convolutional Neural Networks (CNN) method by
converting sound into a spectrogram. Similarly, our proposed
research employs a moderately shallow CNN model, mini-
mizing training demands. In a previous experiment, a CNN
achieved an 86.7% accuracy in classifying 10 categories using
the UrbanSound8K dataset. This involved 3 fully connected
(FC) layers, impacting parameters and computational com-
plexity. In contrast, our research streamlines calculations by
reducing FC layers and focuses on binary classification.

Chen et al. introduced an MPLR approach that effectively
recovers from packet loss during LoRa-based image transmis-
sion [9]. The time taken for image transmission in LoRa is
influenced by factors like spreading factor (SF), bandwidth
(BW), coding rate (CR), and image size. Faster transmission
occurs with lower SF, higher BW, CR of 1, and smaller image
sizes. For instance, employing MPLR under specific conditions
such as SF 7, BW 500, CR 4/5, and an image size of 9 KB
led to a transmission time of 4.92 seconds without packet loss.
Even under the same parameters, when 2% packet loss occurs,
MPLR achieves swift recovery in just 0.17 seconds, resulting
in a total recovery time of 5.09 seconds.

The proposed paper addresses limitations by advocating
for a novel system encompassing three key innovations: (1)
extended-range outdoor capability, (2) minimized latency and
packet loss, and (3) compatibility with a wide range of

projectiles. Leveraging LoRa’s long-range communication ad-
vantages, this system effectively manages shadow effects, en-
hancing precise image analysis, representing novelty (1). The
P-MPLR protocol not only reduces latency but also safeguards
against packet loss in LoRa communication. This becomes es-
pecially crucial for outdoor long-range communication, where
interference from various frequencies is prevalent. Novelty
(3) surpasses prior research by eliminating constraints on
projectile types, offering a versatile solution.

III. METHODOLOGY

Fig. 1. Illustration of the proposed method.

The illustration of the proposed method is portrayed in Fig.
1. The proposed system consists of 2 Raspberry Pi 4B 8GB, 2
sx1262 LoRa Hat for Raspberry Pi, Raspberry Pi HQ Camera
Module and HP-DK40 Microphone. The system process is
divided into two steps: initial stage and continuous stage. In
the initial stage, Pi 1 camera captures the target image and
sends it to Pi 2. In the continuous stage, the shooting point is
decided based on the difference of pixel between the previous
and the after image on occasion a gunshot sound is detected.

A. LoRa

LoRa uses less power and limited bandwidth, therefore, it
displays a low transmission speed to send a large portion of
data such as image or video. Despite this shortage, compared
to Wi-Fi and Zigbee, LoRa is suitable for data transmitting
over long distances [10]. Image transmission is mandatory for
the proposed system considering initial target visualization.
To reduce LoRa transmission time, this paper focused on
decreasing the image size in an initial stage and the shooting
point coordinate is sent instead of an image in the continuous
stage. Transmitting coordinates requires 40 times fewer data
units than transmitting images. Also, LoRa communication
itself has a disadvantage of packet loss because no protocol
has been applied. There is no guarantee that data is safely
transmitted to the receiver because it communicates only on
the physical layer. For stable image transmission, thus, a
protocol capable of ensuring packet transmission is required.
Therefore, the proposed system applied the P-MPLR protocol,
which eliminated the unnecessary portion of point-to-point
communication in the MPLR protocol.
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B. Computer Vision

This paper aims at fast transmission using LoRa com-
munication while reducing the effect on light after target
image capture. To execute the goal, the background portion
is removed through a series of processes. Shooting point is
determined by the comparison of the previous image. Based
on the pixel subtraction, an image negative transformation
and gaussian blurring are performed. Then, image emphasis
is made through divide operation. Finally, the shooting point
can be obtained using the contour. Thereafter, only the point is
transmitted to the shooter. The image of the target is taken in
the same environment for each shooting along with the image
being updated and stored for each new repetition.

C. Sound Detection

The system acknowledges a gunshot when a gunshot sound
is detected, afterwards, figure out the coordinate of the shoot-
ing point. Mel-spectrogram is used for sound detection. By
utilizing Short Time Fourier Transform, a sound wave that
has time amplitude domain is converted to a spectrogram
that additionally has a frequency domain. This is because the
characteristic of the audio data is shown in the frequency
domain. Mel-spectrogram is deduced by applying Mel-filter
bank to spectrogram. This converts the frequency value lower
than 1,000 Hz as linear, and the frequency value higher than
1,000 Hz as log-scale. Mel-spectrogram image is used for
learning CNN model, and binary classification is done that
determines whether the sound is gunshot sound or not.

The CNN that detects gun sounds consists of neurons that
self-optimize through learning. The proposed paper focuses on
advancing the classification performance of the gun sound by
reducing the parameters required to train with fewer hidden
layers to prevent overfitting. After the convolution operation,
FC layer classifies whether the gun-sound. This paper proposes
the adoption of the Exponential Linear Unit (ELU) that
improves the gradient vanishing problem of the activation
function [11]. Batch normalization (BN) was applied instead
of dropout to reduce the effect of covariate shift, where the
distribution of the activation function output changes accord-
ing to the change of the weight parameter in the previous layer
[12]. Finally, the model is applied with an adaptive gradient
algorithm for efficient optimization [13]. It has advantage of
not having to manually adjust learning rate.

D. Data Augmentation

The most crucial problem in sound analyzing research is
the lack of data training. It causes overfitting and difficulty
in handling unseen data [14]. Therefore, in this research
spectrogram augmentation such as time warping, time masking
and frequency masking prevents the overfitting of the model
and improves the performance. The augmented data with
SpecAugment makes the model solid and reduces the effects
of partial loss in the frequency and time domain information.

IV. IMPLEMENTATION

A. Dataset

The dataset consisted of audio data obtained from multiple
sources [15], [16]. Also, included are shotgun sounds recorded
directly from the shooting range. To generate a standardized
spectrogram, the dataset was organized in units of 2 seconds.
A categorical analysis of the data is reported in TABLE I.
Gunshot sounds have a proportion total of 43%. The dataset
is divided into 3 categories: training data, validation data, and
test data; 64%, 16%, and 20%, respectively.

TABLE I
AUDIO SAMPLES CATEGORICAL LISTS

Class # of data
Gun Shot 6,560

Air Conditioner 1,000
Car Horn 429

Children Playing 1,000
Dog Bark 1,000
Drilling 1,000

Engine Idling 1,000
Jackhammer 1,000

Siren 929
Speech 581

Street Music 1,000

Additionally, frequency masking was used to augment the
spectrogram data in this research. This function augments the
data by concealing part of the frequency domain which is
the y-axis of the spectrogram. As for the concealed range,
the frequency masking parameter value was set to 80 as used
in [14]. Frequency masking was applied to all spectrogram
images, and the number of data was increased from 15,499 to
30,998. Fig. 2 depicts what a power spectrogram looks like
after being augmented.

Fig. 2. Power-spectrogram after applying augmentation.

B. Gunshot sound classification

The system utilizes the torchaudio Python library for audio
analysis. Each audio differs from the sample rate and quan-
tization level; the channel is mixed as mono and stereo with
various audio lengths. Thus, the dataset was unified as a mono
channel, 44,100 Hz sampling rate and 2 seconds duration using
zero padding and slice.

A lot of information can be obtained when the sound data is
analyzed from a frequency point of view. The Time-Magnitude
domain of the sound data is converted to the frequency domain.
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Each sound data source of spectrogram was overlapped by
50% in a window unit of 23.2 ms to constitute 87 frames
and 1,024 Fast Fourier Transform (FFT) points were used for
each frame. It is converted into a 223 × 217 spectrogram
using transform module. Additionally, in the case of the Mel-
spectrogram, in accordance with the calculation of 128 Mel
band energy per frame, frames are converted to 223 × 217 size
of Mel-spectrogram [17]. Apply the log scale on the amplitude
squared of the extracted spectrogram and Mel-spectrogram and
convert it to decibel units. Fig. 3 illustrates the spectrogram
and Mel-spectrogram features from one data.

Fig. 3. An example of feature extraction.

This paper applies a CNN model for gunshot sound classi-
fication using the PyTorch framework. The architecture of the
CNN network is described in detail in TABLE II. Network
is contained of 4 convolutional blocks and a FC layer. Each
convolutional block consists: BN, ELU activation function,
and maxpooling with 2 × 2 kernel size and stride value as 1.
Model training is proceeded with cross entropy loss function,
50 epochs, 0.001 initial learning rate and 256 batch size for
model parameter update. The model accuracy is 99.1%, recall
is 98.29%, precision is 99.58% and F1-Score is 98.93%.

TABLE II
DESCRIPTION OF THE CNN MODEL ARCHITECTURE

Layer Output Shape Channel Size Param #
Input Layer 217 × 223 3 0

Conv2D 218 × 224 8 104
BatchNorm2D 218 × 224 8 16
MaxPool2D 109 × 112 8 0

Conv2D 110 × 113 16 528
BatchNorm2D 110 × 113 16 32
MaxPool2D 55 × 56 16 0

Conv2D 56 × 57 32 2,080
BatchNorm2D 56 × 57 32 64
MaxPool2D 28 × 28 32 0

Conv2D 29 × 29 16 2,064
BatchNorm2D 29 × 29 16 32
MaxPool2D 14 × 14 16 0

Linear 2 - 6,274

C. Networking

LoRa is a modulation technique that operates solely upon
the physical layer of the open systems interconnection model.
This means that implementing LoRa on its own offers no

ability for clients to coordinate transmissions to avoid inter-
fering with each other, and delivery of data also cannot be
guaranteed. Solutions to these two issues were built into the
proposed system.

The issue of interference avoidance was solved by limiting
communications to a single point to point link operating within
a single channel in the 915 MHz frequency space. Also,
frequency interference could be solved by using the MPLR
protocol. The proposed system is only designed for point-
to-point communication that does not require unnecessary
overhead of MPLR. Due to the limited packet size of LoRa, the
proposed protocol needs to minimize header size. The structure
of the packet is shown in Fig. 4.

Fig. 4. Structure of the proposed packet protocol.

Packet has 228 bytes of payload size and 12 bytes of
header size. The destination EUI has a MAC address of the
destination. Mac address is a unique address which every
device has. If multiple shooters are using this proposed system
very close to each other, there needs to be assurance that
transmissions are unique to each other. Therefore, the proposed
protocol has 6 bytes destination EUI unlike 4 bytes destination
EUI of MPLR. The sequence number is used to check the
order of the packets. The flag indicates packet type. In the flag,
there are SYN, SYN-ACK, DATA, BVACK, ACK, FIN flags
[9]. The payload size is the length of payload. The checksum
is existing to check integrity for each packet.

D. Computer Vision
Image is generated by a combination of light reflected

from the surface of the object or light reaching the camera.
According to a mathematical expression of the illumination-
reflection model, each pixel value F(x,y) of the image is made
by the multiplication of the illumination component I(x,y)
and the reflection component R(x,y). While the illumination
component is mainly concentrated in low frequency band, the
reflection component is concentrated in high frequency band.
In order to separate these two components, homomorphic
filtering is performed as follows. First, converting RGB to
YUV, log operation is taken for the Y component to generate
Y′. By applying FFT to Y′, the illumination and the reflection
component can be controlled in the frequency domain, respec-
tively. Secondly, Y′ is multiplied by low pass and high pass
filter, to separate Low Frequency (LF) and High Frequency
(HF) components. Next, a scaling factor is applied to LF and
HF component to adjust the illuminance and reflection. An
image in the form of a spatial domain is generated through
Inverse FFT and exponential operation is performed in the
adjusted image. YUV is changed as a result of applying
homomorphic filtering to Y′ [7].
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TABLE III
IMAGE TRANSMISSION SPEED AND PACKET LOSS RATE ACCORDING TO THE APPLICATION OF THE PROTOCOL AND IMAGE PROCESSING

Location Protocol Image Processing Temperature Humidity Wind Distance Transmission Time Packet Loss
Urban No No 2 ◦C 48% 3 km/h 300 m 11 min 30%
Urban No No 8 ◦C 44% 7 km/h 850 m 11 min 90%
Urban No No 26 ◦C 44% 10 km/h 1 km 11 min 15%
Rural No Yes 12 ◦C 64% 10 km/h 300 m 70 sec 10%
Urban No Yes 3 ◦C 80% 3 km/h 300 m 70 sec 30%
Rural Yes Yes 5 ◦C 90% 3 km/h 300 m 80 sec No
Urban Yes Yes 4 ◦C 72% 18 km/h 300 m 100 sec No

Fig. 5. Image processing diagram to obtain initial target portion.

Subsequently, gamma correction is used to achieve the
constant intensity normalization effect regardless of brightness.
And, canny edge detection algorithm is applied to obtain
clear target edge. Finally, a target portion can be acquired by
performing perspective transformation to project a 3D scene
image into 2D. The overall process is illustrated in Fig. 5.
Also, Fig. 6 shows the captured image and the result of
detecting the target.

Fig. 6. Original image and the processing result of the image.

E. Application

Pi 2 performs byte binding on image packets transmitted
from server of the Pi 1. The original image taken by the
camera, only parts of target are imported, an image smaller
than the original is sent to the client server. In the process of
importing the target image, the quality of the truncated target
image is downsampled to improve packet transmission speed.
Moreover, for user visibility, image quality is improved on
the web. In the proposed system, when the camera detects a

bullet mark, it detects the center coordinate of the bullet mark
and transmitted to a web server. It draws a bullet mark on
the target by multiplying the target’s size, which is described
in the image conversion, by the received coordinate values.
To find a shot group, the distance between the two bullets
must be found by comparing the distances of all the bullets
stored by the shooter. Prior to that, since the unit used in the
present system is a pixel, unit conversion was performed in
inches through scale conversion. The length provided in pixels
was changed to inches before the group size was measured,
in which case the Pythagorean theorem was used.

F. Experiments

The experiment was divided into two parts: protocol per-
formance measurement and system performance evaluation.
The protocol performance measurement focused on the image
processing time and packet loss, depending on the application
of P-MPLR for acquiring initial images before shooting. The
system performance evaluation involved applying P-MPLR to
recognize firearm sounds during shooting at a distance of 100
meters and accurately detecting the position of the bullets.

1) Protocol Performance Measurement: This experiment
was performed to compare the transmission speed and packet
loss rate of the initial target image based on the application of
the protocol before shooting. It was conducted at two distinct
locations: an urban setting (Purdue University) and a rural
area (13626 S 525 W, Romney, IN 47981). Constraints of
experiment include whether to apply P-MPLR, whether to
apply image processing and weather conditions. The image
processing was carried out following the procedure outlined
in Fig. 5. The original image size was about 120 KB, but
after image processing, the image size was reduced to about
11 KB. The detailed experimental procedure and results are
described in TABLE III. Without applying the protocol and
image processing, there was a maximum packet loss of 90%,
and image transmission was not possible regardless of the
distance. Under the same conditions, at a distance of 5 m
indoors, there was no packet loss, but it still took 11 minutes to
transmit the image. When only image processing was applied,
an average packet loss of 20% occurred. After applying both P-
MPLR and image processing, it took an average of 90 seconds
to transmit the image without any packet loss.

2) System Performance Evaluation: This experiment was
conducted exclusively at the farm three times. The firing
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distance was 100 m, using 5.56 mm caliber bullets. The angle
of the camera is 30 degrees above the ground, and a model
trained under the conditions outlined in Table II was employed
to detect gunshots. Each shooting session involved firing 10
rounds, and the recognition accuracy was 100%.

The initial target image extracted after starting the system
was 11 KB, and it took 80 seconds. When the gun shot, it
took about 5 seconds to determine that it was a gunshot. After
determining that it was a gunshot, it took about 2 seconds
for the projectile position to be displayed on the web. Fig. 7
represents the predicted projectile displayed on the web and
the actual projectile. Furthermore, the distance error between
the shooting location and the coordinates transmitted through
image processing was within 1 mm.

Fig. 7. Predicted projectile and the actual projectile.

V. CONCLUSION

This research suggests the feasibility of long-distance com-
munication in diverse conditions and the ability to ver-
ify shooting outcomes through a persistent tracking system.
Through the integration of LoRa technology and the imple-
mentation of P-MPLR, a communication framework devoid
of packet loss was established. Leveraging computer vision
technology, the system effectively extracted target images
with background removal, facilitating accurate determination
of the shooting location. The system’s dependability was
substantiated via a series of experiments conducted across
different environments.

Nonetheless, this study presents certain limitations. Despite
the application of homomorphic filtering, parameter configu-
ration remains challenging due to the dynamic variations in
outdoor illuminance and reflection levels, which can fluctuate
based on different scenarios. Moreover, image transmission
through LoRa proves to be time-inefficient when compared to
alternative communication methods.

To enhance the system’s performance, there is a requirement
to enhance the reliability of target extraction and conduct
additional experiments that closely simulate real-world sce-
narios. Furthermore, this research proposes the logging of
each shooter’s performance onto a server database, making it
applicable for applications such as military training or shooting
competitions.
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