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Abstract— In this study, we propose a method for detecting blind 

spots in merging sections of roads using V2X (Vehicle-to- Everything) 

communication to enhance the safety and reliability of autonomous 

vehicles. While autonomous vehicles can detect surrounding objects 

through object perception technologies, there are situations where 

blind spots can occur in merging sections of roads. These blind spots 

can lead to uncertainties in predicting the movements of surrounding 

vehicles and accurately determining the autonomous vehicle's position. 

We utilize V2X communication to exchange object information 

detected by the road infrastructure. The autonomous vehicle receives 

information such as the positions, velocities, and directions of 

surrounding objects and uses HD map information to calibrate the 

location of the object. This solves the position error problem of 

surrounding objects. By doing so, we can detect blind spots in merging 

sections of roads and predict potential collision points with other 

vehicles. This enables the autonomous vehicle to respond quickly and 

effectively. To validate the proposed method, we conducted 

experiments using real-world road scenarios. The results demonstrate 

that blind spot detection using V2X communication enables safe 

autonomous driving. This method contributes to improving the safety 

of autonomous vehicles and enhances overall traffic safety. 

Keywords—Connected vehicle, Autonomous driving, Blind 

spot detection, V2X communication, road infrastructure  

I. INTRODUCTION 

Currently, the automotive industry is undergoing very 
rapid change, centered on the advancement of autonomous 
vehicle technology. Autonomous vehicles break away from 
the existing driver-centered driving method and drive and 
control driving on their own through sensors and algorithms. 
It is expected that this will increase the safety and efficiency 
of car driving, and play a major role in reducing traffic 
congestion and the possibility of traffic accidents. However, 
autonomous vehicles still have the possibility of road safety 
accidents. Since autonomous vehicles must drive in various 
environments and situations, the performance of autonomous 
driving systems is very important. In particular, real-time 
communication between autonomous vehicles and road 
infrastructure is essential. To this end, a V2X (Vehicle-to-
Everything) communication system has been proposed. 

The V2X communication system supports the driving of 
autonomous vehicles [1-3] by exchanging information such as 
real-time traffic information and vehicle location, speed, and 
acceleration through communication between vehicles and 
between vehicles and infrastructure. Through this, 
autonomous vehicles can prevent collisions with other 
vehicles and perform efficient driving by predicting traffic 
congestion. Therefore, V2X communication systems can play 
a major role in preventing problems such as vehicle-to-vehicle 
collisions and traffic congestion, and improving road safety 
and efficiency. 

Existing research on blind spot detection methods [4-6] for 
self-driving cars has already been conducted in various ways. 
Representative examples include methods for detecting blind 
spots using various sensors such as cameras, LiDAR, 
ultrasonic sensors, and radar. However, these methods still 
have limitations. First of all, the camera-based blind spot 
detection method is greatly affected by environmental factors 
such as weather and lighting. In particular, in weather such as 
rain or fog, the screen is blurred or noise is generated, resulting 
in poor detection accuracy. LiDAR-based methods can detect 
blind spots relatively accurately, but are very expensive. Also, 
while radar-based methods are generally good at detecting 
long distances, they have limitations in detecting stationary 
objects. In addition, it is very difficult to detect vehicles 
approaching to merge in the merging section as they are 
covered by road structures. In order to supplement the 
limitations of the existing blind spot detection methods for 
self-driving cars mentioned above, studies using self-driving 
V2X systems are being conducted recently. 

Considering these backgrounds and problems, this paper 
proposes a method for detecting objects located in blind spots 
in the merging section by collecting object information on the 
road through V2X communication with the road infrastructure 
[7]. In the road infrastructure, road conditions are detected 
using sensors such as cameras, radar, and lidar, and this 
information is transmitted to autonomous vehicles through 
V2X (Vehicle to Everything) communication. Through this, 
the self-driving car can use the information transmitted from 
the road infrastructure to identify information on surrounding 
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objects. However, since the object information detected in the 
actual infrastructure contains an error of up to 3 m, HD map 
information is used to supplement the corresponding part[8]. 
It is possible to compensate for the positional error of the 
collected object and to predict the movement path of the object 
to determine whether it collides with an autonomous vehicle. 
Depending on whether or not there is a collision, the self-
driving vehicle can change the control value, and safe 
autonomous driving is possible. 

II. OBJECT DETECTION USING V2X SYSTEM 

A. Interface of Vehicle-to-Infrastructure 

The road infrastructure system transmits emergency 
situation information through wireless communication 
between vehicles and provides real-time traffic information in 
conjunction with an intelligent traffic system. Autonomous 
vehicles receive data such as PVD (Probe Vehicle Data), RSA 
(Road Side Alert), SPaT (Signal Phase and Timing), TIM 
(Traveler Information Message), and BSM (Basic Safety 
Message) through infrastructure built on roads. Among the 
data that can be collected from the road infrastructure, RSA 
data includes road hazard warnings and event information, 
and delivers information such as vehicles, falling objects, 
pedestrians, and reverse driving. Therefore, we utilize RSA 
data to detect objects around the vehicle. 

The interface between road infrastructure and autonomous 
vehicles is shown in figure 1. Road infrastructure and 
autonomous vehicles transmit and receive data using V2X 
communication based on WAVE (Wireless Access in 
Vehicular Environment). Data detected by the road 
infrastructure is transmitted through RSU (Road Side Unit), 
and the autonomous vehicle receives data through OBU (On-
Board Unit) equipped in the vehicle. The data interface with 
OBU can receive data using ethernet-based TCP/IP 
communication, and to receive RSA data, the data was 
collected by configuring a message as shown in Table 1. 

 Table 1. Details of object data message structure of infrastructure 

 When data is collected, the location information 
(Longitude, Latitude) of the object detected by the road 
infrastructure has the WGS coordinate system. We converted 
from the WGS coordinate system. We converted from the 
WGS coordinate system to the UTM coordinate system to 
utilize the location information of the object. Figure 2 is the 
result of converting the coordinate system of the object 
location information received from the road infrastructure and 
visualizing it on the HD map. 

Referring to the specifications of detectors installed in 
road infrastructure, the accuracy of object detection includes 
an error of up to 3 m. Therefore, as a result of collecting the 
location information, it can be confirmed that some objects in 
figure 2 are displayed on a location other than the road. 

B. Blind spot detection through position calibration 

  Objects recognized by the infrastructure system built on 
actual roads deliver location information values that include 
errors. This can be fatal in the control part of autonomous 
vehicles. We used the HD map to calibrate the error value. HD 
Map is a 3D representation of road network information 
(nodes, links), road section information (tunnels, bridges, etc.), 
sign information (safety signs, lanes, crosswalks, etc.), facility 

Name Type Unit Description 

Timestamp  Time - Transmission time 

Num of object Unit8 [0, 255] Object number 

Event type Unit32[] [1~65535] Object type 

ObjectID Uint16[] - Object ID 

Longitude Float64[] deg Object longitude 

Latitude Float64[] deg Object latitude 

Heading Uint16[] deg Object heading 

Speed Uint16[] m/s Object speed 

Layer Description Type 

A1_NODE 
Connecting points of driving 

link 
Point 

A2_LINK Virtual driving path line Line 

A3_DRIVEWAY 
SECTION 

Roads such as tunnels and 
bridges 

Plane 

B1_SAFETYSIGN 
Common attribute values for 

safety signs 
Point 

B2_SURFACELINEMA
RKER 

Line-shaped Road markings Line 

B3_SURFACE 
MARKER 

Plane-shaped Road markings Plane 

C1_TRAFFICLIGHT Traffic light information Point 

C4_SPEEDBUMP Speedbump information Plane 

C6_POSTPOINT Post point information Point 

Figure 1. Overview of the interface between road infrastructure and 
vehicles 

Figure 2. Object visualization image 

Figure 3. HD map image,  (a) HD map viewer image, (b) autonomous 
driving system ui) 

Table 2. HD map main component layer 

373



 

 

information (traffic lights, safety facilities, etc.) and has a 
precision of about 0.25 m. The HD map is composed as shown 
in figure 3, and the main layers are shown in Table 2. 

 We used the driving route link (A2_LINK) among the 
multiple layers of the HD map to calibrate the vehicle's 
location data. A2_LINK is a green line in figure 4, which 
means a virtual path line (linker) that an autonomous vehicle 
can refer to while driving, and linker (L) is a set of location 
points (p) on the road. 

𝑝𝑝 = {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖,, 𝑧𝑧𝑖𝑖}, L = {𝑝𝑝1, 𝑝𝑝2, ⋯ , 𝑝𝑝𝑛𝑛}              (1) 

For the position calibration method of object data, we 
search for the nearest linker based on the position data of the 
object. The distance from the object to the linker (d) means the 
distance to a point perpendicular to the linker when a line from 
the object's position to the linker is connected. The procedure 
for calculating the position of the object (A), the point where 
the object is perpendicular to the linker (B), and the distance 
between the object and the linker (d) is as follows. First, two 
arbitrary location points (𝑝𝑝𝑟𝑟1, 𝑝𝑝𝑟𝑟2) of the linker are extracted. 

𝑝𝑝𝑟𝑟1 = {𝑥𝑥𝑟𝑟1, 𝑦𝑦𝑟𝑟1, 𝑧𝑧𝑟𝑟1},  𝑝𝑝𝑟𝑟2 = {𝑥𝑥𝑟𝑟2, 𝑦𝑦𝑟𝑟2, 𝑧𝑧𝑟𝑟2}          (2) 

Calculate the linear equation (equation 3) of the linker 
using the two location points (𝑝𝑝𝑟𝑟1, 𝑝𝑝𝑟𝑟2 ). The location point 
includes height information (z), but the corresponding value is 
not used. 

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 (𝑎𝑎 ≠ 0, 𝑏𝑏 ≠ 0)                   (3) 

𝑎𝑎 = ( 𝑦𝑦𝑟𝑟2 −  𝑦𝑦𝑟𝑟1) /  (𝑥𝑥𝑟𝑟2 −  𝑥𝑥𝑟𝑟1)                  (4) 

𝑏𝑏 =  −1, 𝑐𝑐 = 𝑦𝑦𝑟𝑟1 −  𝑎𝑎𝑥𝑥𝑟𝑟1                        (5) 

As with the linker, it calculates a straight line ( 𝐴𝐴𝐴𝐴̅̅ ̅̅ ) 
between the position of the object (A) and the point where the 
object is perpendicular to the linker (B). 

𝑦𝑦 − 𝑦𝑦1 =  𝑦𝑦2− 𝑦𝑦1
𝑥𝑥2− 𝑥𝑥1

(𝑥𝑥 −  𝑥𝑥1)                          (6) 

Since the straight line (𝐴𝐴𝐴𝐴̅̅ ̅̅ ) and the linker's straight line 
(ax+by+c=0) are perpendicular to each other, the product of 
the slopes of the two straight lines has -1. 

− 𝑎𝑎
𝑏𝑏  ×   𝑦𝑦2− 𝑦𝑦1

𝑥𝑥2− 𝑥𝑥1
 =  −1                            (7) 

𝑎𝑎(𝑦𝑦2 − 𝑦𝑦1) =  𝑏𝑏(𝑥𝑥2 −  𝑥𝑥1)                          (8) 

Since the length of the straight line (𝐴𝐴𝐴𝐴̅̅ ̅̅ ) and the distance 
(d) between the object and the linker have the same value, the 
value of d can be derived by calculating the length of the 
straight line (𝐴𝐴𝐴𝐴̅̅ ̅̅ ). The length of a straight line (𝐴𝐴𝐴𝐴̅̅ ̅̅ ) was 
calculated using the distance equation between two points. 

𝐴𝐴𝐴𝐴̅̅ ̅̅ = √(𝑥𝑥2 − 𝑥𝑥1)2 − (𝑦𝑦2 − 𝑦𝑦1)2                 (9) 

Applying the previously arranged formulas to equation 9, 
the distance (d) between the object and the linker can be 
calculated as follows. 

𝑑𝑑 =  |𝑎𝑎𝑥𝑥1 + 𝑏𝑏𝑦𝑦1 + 𝑐𝑐| / √𝑎𝑎2 + 𝑏𝑏2                   (10) 

Based on the object, the distance (d) with several linkers 
is calculated, and the linker with the minimum is detected. 
Then, the location of the point (B) perpendicular to the linker 
is extracted. 

𝑥𝑥2  =  (𝑥𝑥1 + 𝑎𝑎𝑦𝑦1 − 𝑎𝑎𝑎𝑎) / (𝑎𝑎2 +  𝑏𝑏2)              (11) 

𝑦𝑦2  =  𝑎𝑎𝑥𝑥2 + 𝑐𝑐                                  (12) 

The position of the object was calibrated by calculating the 
minimum distance between the object and the linker and 
calculating the position of the point perpendicular to the 
nearest linker. In some road sections (merging roads, 
diverging roads, etc.) where the structural form of the road is 
different, it is easy to distinguish the speed or height value of 
the vehicle, so the correction was performed in consideration 
of the speed and direction of the object in the corresponding 
area. The result of correcting the object position is shown in 
figure 5, and figure 6 is the result of recognizing objects 
located in the blind spot area that the self-driving vehicle 
cannot recognize with the sensor in sections such as junctions 
through object position correction. 

Figure 4. Calibration of object position Figure 5. Result image of object position calibration 

Figure 6. Result image of blind spot detection in merging section, (a) 
camera image, (b) proposed method) 
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III. COLLISION PREDICTION 

An autonomous vehicle can receive information about 
objects detected by the infrastructure through V2X 
communication and detect objects located in blind spots that 
are difficult to detect with sensors in sections such as merging 
sections. In this chapter, we propose a method to calculate the 
expected point of collision with a driving autonomous vehicle 
and the time until the collision by utilizing the detected object 
0information. 

Figure 7 shows a flowchart for collision prediction. First, 
the object recognition values described in the previous chapter 
are set as the initial input. Then, we apply the dead reckoning 
method, which calculates the position through a simple 
physics formula, to estimate the moving position of the object 
and proceed with collision prediction. During the dead 
reckoning process, if an object recognition value is received 
from the infrastructure, it is updated to the corresponding 
location, and if an object is recognized by the sensor installed 
on the autonomous vehicle, the collision prediction is 
performed using the sensor measurement value. This is 
because the sensor recognition of autonomous vehicles is 
performed at a closer distance and has higher accuracy. 

A. Prediction of vehicle behavior 

Dead reckoning is a technique for estimating the next state 
in the absence of a network or signal. Road infrastructure 
transmits object information at a frequency of about 10 Hz. 
However, delays can occur due to environmental factors and 
communication load. On the tested roads, vehicles are driving 
at speeds above 60 km/h, so missing some data can become a 
risk factor.  

To apply the dead reckoning technique, we predicted the 
path that the object will driving. To calibrate the position of 
the object, we used the driving path link (A2_LINK), which is 
a virtual route line that the vehicle can refer to while driving. 
Therefore, it is very likely that the object will move along this 
path, so we use A2_LINK to generate an estimated path for 
the object. Figure 8 shows the result of the predicted path of 
the object. 

In this paper, the expected moving distance (∆𝐷𝐷) of an 
object is calculated using dead reckoning[9]. 

∆𝐷𝐷 = 𝑣𝑣 × ∆𝑡𝑡                                (13) 

The predicted distance drived (∆D) is the distance between 
the detected object's current location (detected location) and 
the predicted location drived by a certain amount of time at 
the object's speed. The velocity (v) of the object is the value 
of the object's velocity provided by the infrastructure through 
the message defined in Table 1, and the time (∆t) is set to 0.05 
s. Therefore, dead reckoning can update the expected 
movement information of the object at an interval of 0.05 s 
and guess the location of the object. For example, when the 
object is driving at 60 km/h, it moves 0.83 meters per 0.05 
seconds. We can estimate the object's position by moving the 
object 0.83 meters every 0.05 seconds along A2_LINK. 

B. Collision prediction 

As an object's position is updated, its predicted path is also 
updated. We can use the paths of the objects to calculate the 
predicted collision points. In the case of the merging section, 
since it is a section where two roads merge, a collision point 
is necessarily generated, and the section means the point 
where the expected paths of the objects overlap. 

Figure 10 shows the result of simulating dead reckoning 
along the vehicle's predicted path without updating the object's 
position. The red circles along the predicted path are the result 
of detecting and marking potential collision points. The risk 
of collision can be predicted by calculating the time to 
collision (TTC) of each vehicle to the predicted point of 
collision based on the predicted point of collision[10]. 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑑𝑑(𝑡𝑡) / 𝑣𝑣(𝑡𝑡)                                (14) 

In Equations 14, d(t) means the distance between the target 
vehicle and the expected point of collision when the current 
time is t, and v(t) means the speed of the target vehicle. A 
collision can be predicted by comparing the TTC values of the 
driving vehicle and the approaching vehicle. 

Figure 7.  Collision prediction flowchart 

Figure 8. Image of driving path prediction result 

Figure 9. Dead reckoning technique schematic diagram 

Figure 10. Detection of predicted collision points 
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IV. EXPERIMENTS 

A. Environments 

To evaluate the method proposed in this paper, we 
collected and tested the infrastructure information on real 
roads, and the information was collected at Technopolis-road 
in Daegu, Korea. Technopolis-road is an infrastructure-based 
environment consisting of 2.4 kilometers of urban roads and 
12.9 kilometers of highways for autonomous driving 
demonstration, with RSUs, object detectors, pedestrian 
detectors, positioning correction base stations and signal 
controllers. In addition, the V2X communication system for 
delivering information is designed to meet the SAE J2735 data 
exchange standard. We utilized the information of the object 
detector among the built infrastructure to collect the 
information of the object, and the location of the built object 
detector is shown in Figure 11. 

The autonomous vehicle is a Hyundai Ioniq EV equipped 
with camera, lidar, radar, GPS, OBU, main PC for 
judgment/control, and sub PC for perception, as shown in 
Figure 12.  The autonomous driving system is designed in 
Ubuntu, Linux environment, and includes perception 
algorithms using sensors such as camera and lidar, and control 
algorithms such as LKS (Lane Keeping System), AEB (Auto 
Emergency Braking), and ACC (Advanced Cruise Control). It 
also receives information from the infrastructure through 
TCP/IP communication with the OBU. 

B. Experimental result 

Two of the three object detectors deployed on the road 
contain data from the merging section. We tested the merging 
section for object detection and collision prediction in the 
blind spot area, and verified its performance by comparing it 

with the results of object detection using camera and lidar 
sensors. The test was evaluated by simulating the same data, 
and the comparison group was compared using an open source 
that users can easily access. The camera used yolo_v5[11], 
and the lidar used autoware AI's lidar detection algorithm[12]. 

Table 3. Distance to collision position according to object detection 

 
Table 4. TTC at the time of object detection 

Scenario 

Distance to Collision position (m) 

Camera-based Lidar-based 
Proposed 

method 

ego target ego target ego target 

1 227.1 192.45 235.15 212.87 280.81 265.07 

2 265.23 263.82 326.87 297.66 387.23 330.11 

Scenario 

TTC (s) 

Camera-based Lidar-based 
Proposed 

method 

1 13.381 13.464 15.988 

2 13.785 16.015 18.914 

Figure 11. Infrastructure configuration and object detector images 

Figure 12. Autonomous vehicle 

Figure 13. Result of object detection on merging section 1. (a) camera-
based, (b) lidar-based, (c) proposed method 
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 The proposed method enables the detection of objects in 
areas that cannot be detected by sensors, and it is easy for 
autonomous vehicles to react to collisions because they can be 
detected at a distance from the expected collision point. 

Since the object detector's object detection accuracy in the 
actual infrastructure cannot be verified, the proposed method 
enables the initial response of the autonomous vehicle and 
subsequent safe control through the sensor's detection results. 

V. CONCLUSION 

In this paper, we proposed a method to receive object 
information on the road using V2X communication and 
calculate the expected path of the object to estimate the 
expected collision point. As a result of experiments using 
infrastructure data of real roads, we were able to detect objects 
before the sensors of autonomous vehicles at points where 
collisions are expected, such as merging sections. 
Furthermore, we calculated the time-to-collision (TTC) to the 
collision point based on the detected object information. The 
proposed method confirms that it is possible to detect objects 
faster than sensors at points where collisions are expected, 
such as merging sections, and this enables actions such as 
performing initial control of the approaching vehicle. These 
initial controls can allow the autonomous vehicle to take 

actions such as slowing down to prevent a collision or 
minimize the risk of a collision. 

In future work, we will conduct experiments on more 
diverse road conditions and object types to validate the 
performance of the proposed method. In addition, we hope to 
improve the safety of autonomous vehicles and the efficiency 
of the road environment by improving the efficiency and 
reliability of V2X communication and considering the 
applicability in real road environments. 
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Figure 14. Result of object detection on merging section 2. (a) camera-
based, (b) lidar-based, (c) proposed method 
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