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Abstract—In recent years, technological advancements in Un-
manned Aerial Vehicles (UAV) have removed barriers to entry
on drone usage for the public. While this has led to the growth
of the drone industry it has also provided terrorists with easier
access to drones. Rising threats of malicious drones have raised
the importance of a Counter Drone System (CDS). Traditional
CDSs use a variety of physical sensors and technologies to detect
hostile drones and react efficiently, however, these methods have
their own set of constraints, such as high power consumption and
short operational range. This paper proposes a power-efficient
long range CDS composed of a LoRa mesh network and on-
device Machine Learning (ML). LoRa provides low-power and
long range communication and the multi-hop feature of the mesh
network expands the coverage of the network. Applying Tiny
Machine Learning (TinyML) for detecting drone on the Micro-
Controller unit is reasonable to design long range communication.
On device Machine Learning has no round trip between server
and device. The implemented system achieves a satisfactory
communication range, a successful operation of the UAV detection
and a power consumption which is similar to that of typical MCU.

Index Terms—Counter Drone Systems, Counter UAV system,
Unmanned aerial vehicle (UAV), UAV detection, Data communi-
cation, Wireless communication

I. INTRODUCTION

The reduction in manufacturing cost and physical design
associated with drones has increased accessibility to numerous
industries seeking to utilize unmanned aerial vehicles (UAVs)
for their personal needs. The impact of these improvements has
invigorated a variety of commercial UAV fields such as trans-
portation, delivery services, and disaster monitoring [1]. As
the UAV industry grows, the threats of hostile drones increase.
Occurrences of adversarial drone incidents have been observed
around the world as reported by the media. In Saudi Arabia,
the Houthi rebels in Yemen actively exploited technologically
improved drones to attack oil treatment facilities, oil supply
facilities, and cities in 2019 and 2021 [2]. In 2022, Russian
kamikaze drones struck Ukraine. Since mid-October 2022,
Russia has initiated countless drone attacks on Ukraine [3].

Recently Israel executed a drone attack on an Iranian defense
factory [4]. These violent incidents demonstrate the necessity
for a Counter Drone System (CDS) to mitigate the impacts of
adversarial drones on the functioning of society.

Ground Counter Drone Systems (GCDS) that detect aerial
enemies on the ground in a fixed location have the limita-
tions of flexible response. Airspace Counter Drone Systems
(ACDS), on the other hand, use drones to observe wide areas
in the air regardless of geographic limitations. The strategy
of ACDS triggers more power consumption causing limited
operation time and distance. Conventional methods that supply
additional power [5], [6] reduce these limitations. However,
these methods inevitably have heavier payloads, which means
that the operation time and the range of the Counter Drone
System are also subject to restrictions.

The purpose of this paper is to design an enhanced long
range Counter Drone System that leverages a power-efficient
network structure while performing drone detection. In order
to achieve this goal, each drone is equipped with a long range
wireless platform and an on-device detection component. A
Mesh network is utilized for wide area coverage and to
ensure robustness to damage via multi-hop. Since multiple
hops constitute the network, data is relayed among hops and
damaged hops are replaced by regular ones. A drone takes the
visual data from the camera to detect adversarial drones and to
execute inference with the detection model directly from the
device. Therefore, the prediction process eliminates redundant
data transmission that sends large visual data to a central
computing system. This process suggest efficient methods to
the drone industry to build an CDS.

II. RELATED WORKS

The immobile nature of a GCDS alleviates size, weight, and
power constraints and allows for a more resource-intensive
system that uses more accurate and powerful devices, radars,
and cameras. The radar recognizes unidentified objects that
reflect electromagnetic radiation of radar [7]. Cameras are used
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Fig. 1. System overview. Adapted from [22]

to capture thermal and visual image of drones. The images
used to identify characteristic of drones [8]. Despite all this,
the fixed location of a ground system has limited visibility and
response to the drones.

Airspace Counter Drone Systems consist of specific drones
which loaded sub systems. The drones provide mobility for
the system to universally detect and respond to other drones.
An optical-based approach system [9] not just detects drones
using visual data but also adds functions for tracking. Research
from NASA [10] is a system focused on searching, detecting
and tracking. In this system, a small UAV uses a Wi-Fi link
to transmit the live video streams of flight telemetry data and
its front camera to the ground computer. The ground system,
which is off board computer, receives the data and runs all the
processes such as core software components. The centralized
computing structure leads to have high computing resource
and data transmission latency for transmitting and processing
large data on the off-board computer.

As it uses Wi-Fi links, it is also important to select the
appropriate wireless communication protocol to improve the
performance of certain drone systems. A swarm of UAVs [30]
that builds a wireless infrastructure using high-speed Wi-Fi
has been proposed. They form a mesh network and provide
up to 160Mbps of wireless communication over a coverage
of about 200m. It has adequate throughput for large-scale
data transmission, whereas it results in the limit of maximum
distance [31].

III. METHODOLOGY

The system to relieve the problems of the original ACDS is
shown in Fig. 1. It is designed by utilizing the following tools:
ESP32, LoRa modulation, Mesh network, TinyML, object
detection model.

A. ESP32-WROVER

ESP32-WROVER is manufactured as powerful and generic
MCU based on ESP32. ESP32 has ability to operate in a
variety of environments stably [11], [12]. Generally drones
flay at few hundred meters to 10km [13], [14]. [15] shows
atmosphere temperature below 5km where terror attack is
conducted is -25–17°C. As ESP32 operate successfully under
the -40–125°C environment, ESP32 is suitable for a MCU of
CDS.

ESP32 supplies several power modes: active mode, modem-
sleep mode and deep-sleep mode. Each power modes consume
240mA, 20-68mA and 10µA [11]. Eliminating unnecessary
power modes can be benefit battery life.

B. LoRa modulation

LoRa stands for a wireless modulation scheme derived
from Chirp Spread Spectrum (CSS) [16]. LoRa modulation
encodes data bits by chirps with linear variation of frequency.
Major characteristic of chirp is constant envelop that enables
efficient low-power modulation. The energy that is consumed
to make a same link budget is saved compared to a traditional
modulation, such as Frequency Shift Keying (FSK), due to the
processing gain of LoRa [16]–[18].

The broadband chirp pulse is immune to multipath prop-
agation that interferes with a wanted radio signal and fad-
ing that is attenuate variation of a radio signal. The high
time-bandwidth product and its asynchronous nature provide
robustness to Radio Frequency Interference (RFI) [19]. The
out-of-band selectivity of receiver is shown as 90dB and co-
channel rejection is shown as 20dB or more. On the other
hand, FSK features 50dB and -6dB respectively. The figures
of LoRa are outstanding compared to FSK. This excellent
immunity to multipath, fading and RSI in link budget lead
4 times or beyond enhancement in communication range [16],
[20], [21]. LoRa generates low receiver sensitivity (up to -
140dBm) which allow receiver to detect weak signals as the
sensitivity of receiver is inversely proportional to channel
bandwidth. Thus LoRa is suitable for low-power and long
range communication.

Physical and electrical configurations of LoRa affect the
performance of LoRa. The configurations consist of four
parameters. The parameters are set depend on the purpose of
usage. All changes of parameters have a trade-off [23].

1) Transmission power: Transmission power stands for the
strength of transmitted signals. The higher transmission power
enables a higher link budget while power consumption for
transmission increases.

2) BandWidth (BW): BW represents the frequency range
of chirp which is modulated. Narrower BW result in longer
range and slower transfer rate.

3) Coding Rate (CR): LoRa provides a error correction
scheme to improve the robustness of signals from a interfer-
ence. Payload includes actual data and error-correcting data
which is used to verify the error. CR defines the ratio of
actual data to error-correcting data. Increasing the CR makes
the signal more reliable, however the data rate decreases.

4) Spreading Factor (SF): SF represents how many chirps
is used per a symbol. The higher SF increase the sensitivity
of receiver.

C. Mesh network

Mesh network consists of a series of communication nodes.
They are interconnected over wireless links using multiple
wireless technologies. It makes all nodes be connected to all
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other nodes. Each node has routing functions and communi-
cates with only the nearby nodes. Even if one node fails, other
paths will be used to transmit the data because of its connectiv-
ity. So this network provides connection continuously through
rerouting if there is a blocked route by hopping the data from
node to node until it reaches its destination [24], [25].

In addition to its robustness, mesh network increase the
network coverage. Each node turns on the power and dis-
covers other nodes within a certain range for large coverage.
So it simplifies extending the coverage by adding a new
node to existing coverage. According to the characteristics of
multi-hop communication, network coverage will be expanded
without difficulty in channel capacity, which overcomes the
disadvantage of existing wireless networks that are vulnerable
to line of sight (LOS) by supporting non-line of sight (NLOS)
connectivity [29]. Also it is possible to cover a wide area by
interconnecting the multiple mesh networks [25].

D. Drone detection method

1) TinyML, TensorFlow Lite for Microcontrollers: Tiny
Machine Learning (TinyML) allows to implement ML tasks
on microcontroller and other low-memory devices [26]. It
allows to data generated by the device does not have to leave
the device, which helps to reduce communication latency be-
tween server and device. TensorFlow Lite for Microcontrollers
(TFLM) is open-source framework for running machine learn-
ing models. TFLM makes it easy to deploy TinyML models
on a device. The framework is implemented in C++ and
supports Arduino library. It is available to be ported to a ESP32
architecture board [27].

2) Object detection: Convolutional Neural Network (CNN)
is suited for object detection because its receptive field effec-
tively capture local features in data [28]. The convolutional
layer generates features from receptive field of input data by
sharing the convolution kernel. These reduce the number of
parameters required for training the model and complexity.

3) Model optimization: Edge device typically has limited
memory and computational power. In edge device, various
optimization methods are applied to reduce model size and re-
source usage for on-device AI. Quantization coverts precision
of model weight parameters to a lower precision. By reducing
the precision of weight parameters, model size, memory usage
and computation cost can be reduced.

IV. IMPLEMENTATION

The system uses observer drones to detect unidentified aerial
object as shown in Fig. 1. The observer drones are equipped
with a camera, MCU, and LoRa transceiver. Each of the
drone builds LoRa mesh network, playing a role of network
node. The camera records field of drone view direction and
drone detection model on MCU predicts the existence of
unidentified object by the recorded image at regular intervals.
The prediction result of text type is transmitted by LoRa
transceiver and shared through a mesh network.

Fig. 2. Hardware structure of the system

A. System development

1) Hardware: ESP32-WROVER MCU board is used to
run the system, including communication and detection. This
board provides several communication interfaces, such as
Serial Peripheral Interface (SPI) and General Purpose IO
(GPIO). The structure of hardware is shown in Fig. 2. Camera
module, OV2640 is connected by serial control bus port for
camera. As the board do not have LoRa module, external
LoRa transceiver, RFM95W from Adafruit is connected by
wires through male pins of the board. The board transmits
the data through SPI and transceiver transmits interrupt
signals through GPIO. 915MHz omnidirectional antenna is
soldered in transceiver with SMA adapter. Since the board
have micro-b port for power supply and uploading code, any
type of battery is compatible. Although MCUs derived from
ESP chip offer native software platform, ESP-IDF, software
of the system is implemented based on Arduino IDE for
compatibility with open source libraries.

2) Network: LoRa mesh network through multi-hop is
implemented for communication within the system. The board
is programmed to play a role of hop in mesh network and
build a mesh network. Fig. 3 shows proposed network stacks
of the board. RadioHead is packet radio library based on
Arduino to send and receive packetized data on embedded
Micro-Processor Unit (MPU). Manager class in RadioHead
builds a mesh network in the constructor and provides the
functions to transmit and receive the data. Driver class has
the interfaces to configure LoRa transceiver setting, such as
transmission power, frequency, and LoRa parameters. Four
recommended options to set the LoRa parameters depend on
the purpose is provided. SF and CR are the main factors which
affect the performance [32] and high date rate is not essential
for the system as text based information of detected UAV is
transmitted. The system uses high SF and CR to communicate
stably even at a long distance.

Table I lists the specifications of radio which are configured
by RadioHead. LoRa modulates the data by 4096 chirps per
a symbol, adding 4 bits of error correcting data. Transceiver
transmits the signal at a power of 20dBm over 915MHz by
omnidirectional antenna which have 5dBi gain.

3) Detection: The ESP32-WROVER board has small mem-
ory to store data and run code. Usually, in Arudnio, a TF
model is stored as a global variable for executing code until
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Fig. 3. OSI network layers of the system

TABLE I
RADIO SPECIFICATIONS FOR THE DRONE COMMUNICATION

Specification value

Modulation scheme LoRa
Frequency 915MHz
Transmission power 20dBm
Bandwidth 125kHz
Coding rate 4
Spreading factor 4096 chips/symbol
Receiver sensitivity -144dBm
Antenna directivity Omnidirectional antenna
Antenna gain 5dBi

process terminates. These take significant amount of memory.
Therefore, small and simple detection model in Table II is
designed for operating drone detection tasks on the system
with simple CNN structure. The network was implemented
using the TensorFlow and Keras library and consists of multi
layer: two convolution layers, one batch normalization layer,
one average pooling layer, one flatten layer, one fully con-
nected layers and one drop layers. The convolution layers
extract feature maps of input, while batch normalization layer
normalizes output of convolution layer. Global average pooling
reduces feature map size and model size. Flatten layer flattens
multi-dimensional feature maps to one dimension. To prevent
overfitting, dropout layer is used. The output value represent
coordinates of bounding box on drone.

In order to deploy TensorFlow model to ESP32-WROVER
board, TF model is converted in two steps: converting TF
model to TensorFlow Lite (TFL) model and converting TFL
model to C-style code. The first step involves converter to
convert the TF model into a tflite file using the TF library.
Second, TFL model is converted to C-style code by using
linux xxd command which converts file to binary data. The

TABLE II
DRONE DETECTION MODEL SUMMARY

Layer Input Shape Output Shape note
Cov2D (48,48,1) (48,48,2) K 5x5, S 1
Cov2D (48,48,2) (48,48,3) K 7x7, S 1

Batch Normalization (48,48,3) (48,48,3)
Average Pooling (48,48,3) (8,8,3) K 6x6

Flatten (8,8,3) (192,1)
Dropout (192,1) (192,1)

Fully Connected (192,1) (4) Coordinates

Fig. 4. A wide flatland where three nodes are deployed to measure a link
budget of 100m communication. Adapted from [22].

binary data and TFL C++ library is used to Arduino code for
performing prediction.

B. Performance evaluation

Three experiments were conducted to evaluate the
performance of the designed system. The power consumption
test confirmed the effect of LoRa on the power efficiency of
each drone and the possibility of on-board detection on the
low-power MCU. The communication quality test measured
the link budget in restrict environment and evaluates the
quality of implemented LoRa mesh network by comparing
with an estimated link budget. The detection test evaluated
the drone detection model based on three criteria, drone
detection accuracy, drone inference latency and whether the
model is executable on each drones.

1) Communication quality: The purpose of this experiment
is evaluating a quality of communication within the system.

LoRa have a potential to communicate up to 5km away in
urban areas and up to 15km away in rural area since NLOS
environment has an impacts on communication distance [33].
On the other hand, the communication of the system have
a ability to secure a LOS space, since the observer drones
operate at a high enough height. LOS space where a primary
radio propagates is called the fresnel zone. Fresnel zone is
formed in the shape of a prolate spheroid between a transmitter
and a receiver. A radius of fresnel zone is obtained from a
equation (1). Where D is the distance between a transmitter
and a receiver in km, f is a frequency in GHz.

R = 17.31×

√
D

4× f
(1)

Two experiments was performed in Fig. 4 and Fig. 5. One
base station and two drones was deployed to measure a link
budget of UAV-to-Ground (U2G) communication and UAV-to-
UAV (U2U) communications. The base stations was installed
on the ground and the drones was hovering at an altitude
higher than the radius of fresnel zone. Every node requested
the packet transmission to every other node to measure a link
budget. Air nodes transmitted the routing table to ground node
to inspect the multi-hop communication and monitor the status
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Fig. 5. A wide flatland where three nodes are deployed to measure a link
budget of 200m communication. Adapted from [22].

TABLE III
THE MEASUREMENT OF A LINK BUDGET IN THE EXPERIMENTS FOR

COMMUNICATION QUALITY

Distance node1 to node2 node2 to node1 node2 to node3 node3 to node2
100m -80.96dBm -86dBm -87.09dBm -82.17dBm
200m -97.78dBm -90.18dBm -90.86dBm -90.97dBm

of mesh network. The log of all operations was recorded in a
flesh memory of the node which ran the operation.

The results of the two scenarios were measured as shown
in Table III. It is necessary to calculate the maximum distance
through them to check the network coverage of our system.
Link budget shows the performance of a wireless communi-
cation channel and figures out if communication works well
when it is compared to receiver sensitivity. If the link budget
becomes smaller than the receiver sensitivity, it is not allowed
to detect the signal, so they are disconnected. The link budget
before disconnection has a link with maximum distance, and
thereby it is possible to evaluate the network coverage.

L = Pt − cableloss+At − pathloss+AR (2)

The transmitter power, Pt in dBm is used for the link
budget calculation. At and Ar mean transmitting antenna gain
and receiver antenna gain in dBi respectively. Loss that occurs
during communication, such as cable loss and path loss in
dB, is also a factor in equation (2). The results of the test are
shown in Fig. 4 and Fig. 5, measured differently in the two
cases. As the distance between the two nodes increased, the
path loss increased, resulting in a difference between the two
link budgets. The difference of them indicated the path loss
that occurred when the nodes were 100m apart, and it meant
the path loss increased by 0.194dB per 10m. The receiver
sensitivity was obtained as -144dBm by using the fact that
the receiver sensitivity of the LoRa transceiver used in the
system is reduced to -144dBm. The minimum link budget
not smaller than receive sensitivity was -144dBm and the
increment in pathloss was calculated through the difference
from the -86.57dBm, link budget in the 200m experimental
environment. Therefore the maximum distance of our system
was 3.16km when the pathloss increased by 0.194dB per
10m. Additionally, the power consumption of each board
was measured in the mesh network. By using a power meter,
the power that the board consumed from the battery was

calculated when sequentially the ESP32 board, a power meter
and a power bank were connected. The standby power while
the network was connected was 76mA, and the power when
transmitting and receiving the data rose to 109mA.

2) Detection experiment: Due to the limited hardware
resources of the system, the drone detection model has low
detection accuracy and inference latency. Therefore, this exper-
iment focused on confirming whether the detection model was
executed on the system than detection accuracy and inference
latency evaluation. The experiment was divided into two parts:
experiment setting and result.

The experiment setting is divided into two steps, pre-
processing data and training detection model. Drone dataset
[34] is used to train detection model. The dataset is newly
labeled that was originated from unlabeled 4000 drone images
for Amateur Drone Detection and Tracking Project in 2019
[35]. This labeled dataset has 1300 drone images and their
annotation of XML files. The XML files have only 1 class
to represent whether object is drone or not. If the object is
a drone, the file contains annotation which is coordinates of
the bounding box. The dataset for experiment was resized to
48 × 48 pixels to reduce the input data size and annotation
XML files were converted to CSV format. In order to train
model, adam optimizer was used to improve learning rate
and training stability. Loss function is Mean Squared Error
(MSE) to minimize the difference between a predicted value
and a ground truth for updating model weights. After training
the detection model, the trained model was applied to the
hardware system. The performance experiment was conducted
to detect drones while fixing location of the system every
100ms. This experiment designed with the hypothesis that if
the predicted result is correct such for 0.3s, then it verify that
the TensorFlow model is working properly in the system.

The result of the experiment is that the TF model was
executed properly on the system when a drone was correctly
detected for 0.4s. Also, the power consumed on the ESP32
board during detecting the drones was measured by using
the power meter. On average, the standby power when the
detection model was implemented was 85mA, and the peak
power increased to 103.5mA.

V. CONCLUSION

In this paper, power efficient and long range ACDS is
proposed. In field experiment to evaluate a communication
performance, the implemented network demonstrated a
maximum communication range of 3.16km. The UAV
Detection model was successfully operated on low-power
MCU from the experiment for detection evaluation. The
power consumption of functions was similar to a power
consumption of typical MCU. However, simultaneous
operation of networking and detection was unsuccessful. The
on-chip Static RAM (SRAM) which is used flexibly was
only 520kb and Arduino was not possible to utilize a Pseudo
Static RAM (PSRAM) for detection although the board has
a 8mb PSRAM. The system which is run by a board with a
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larger SRAM or uses a smaller detection model has a ability
to integrate a networking and detection. Furthermore, more
datasets and more efficient model guarantee higher accuracy.
These potentials of the system for functional integration and
improvement are left as future plan.
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