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Abstract—A pedestrian navigation system (PNS) in indoor
environments, where global navigation satellite system (GNSS)
signal access is difficult, is necessary, particularly for search
and rescue (SAR) operations in large buildings. This paper
focuses on studying pedestrian walking behaviors to enhance
the performance of indoor pedestrian dead reckoning (PDR)
and map matching techniques. Specifically, our research aims
to detect pedestrian turning motions using smartphone inertial
measurement unit (IMU) information in a given PDR trajectory.
To improve existing methods, including the threshold-based
turn detection method, hidden Markov model (HMM)-based
turn detection method, and pruned exact linear time (PELT)
algorithm-based turn detection method, we propose enhanced
algorithms that better detect pedestrian turning motions. During
field tests, using the threshold-based method, we observed a
missed detection rate of 20.35% and a false alarm rate of 7.65%.
The PELT-based method achieved a significant improvement
with a missed detection rate of 8.93% and a false alarm rate
of 6.97%. However, the best results were obtained using the
HMM-based method, which demonstrated a missed detection
rate of 5.14% and a false alarm rate of 2.00%. In summary, our
research contributes to the development of a more accurate and
reliable pedestrian navigation system by leveraging smartphone
IMU data and advanced algorithms for turn detection in indoor
environments.

Index Terms—Pedestrian navigation system, pedestrian turn
detection, hidden Markov model, pruned exact linear time,
indoor map matching.

I. INTRODUCTION

A pedestrian navigation system (PNS) in indoor envi-
ronments [1], [2], where global navigation satellite system
(GNSS) [3]–[10] signal access is difficult, is necessary, par-
ticularly for search and rescue (SAR) [11]–[13] operations
in large buildings. Some systems rely on preinstalled in-
frastructure. These include pseudolites [14], radio-frequency
identifications (RFIDs) [15], [16] and ultra-wideband (UWB)
radars [17]. However, these infrastructure installation and
maintenance procedures require significant time and effort
[18], [19]. To navigate without the use of infrastructure,
pedestrian dead reckoning (PDR) systems sometimes use an

inertial measurement unit (IMU) mounted on the foot because
the foot-mounted IMU has an explicit stance stage that can be
used to suppress the long-term drift of inertial sensors using
the zero-velocity update (ZUPT) extended Kalman filter (EKF)
method [20].

Our work aims to investigate and leverage pedestrian walk-
ing behaviors to enhance the performance of indoor PDR
and map matching techniques. PDR enables the tracking of
a pedestrian’s trajectory without relying on external signals
or infrastructure. However, PDR is susceptible to cumulative
errors over time, leading to a significant degradation in po-
sition estimation accuracy. By reliably detecting pedestrian
turning motions within a given indoor PDR trajectory, we
can identify the locations where turns occur, which can be
considered as intersections of corridors. These intersections
serve as reference points to improve the accuracy of indoor
map matching techniques. Thus, our study focuses on the
detection of pedestrian turning motions in the PDR trajectory.

Several methods to detect pedestrian turns have been devel-
oped by various researchers. Three representative methods to
detect a pedestrian’s turning motion are as follows.

1) Threshold-based turn detection method [21]
2) Hidden Markov model (HMM)-based turn detection

method [22]
3) Pruned exact linear time (PELT) algorithm-based turn

detection method [23]
However, these methods have limited accuracy. There are turns
that cannot be detected by these algorithms, and there are
cases in which a turn is detected even when it is not a turn.
Therefore, we propose methods to improve each of the three
turn detection methods to enhance the performance.

II. THRESHOLD-BASED TURN DETECTION METHOD

A. Existing Threshold-Based Turn Detection Method

The existing threshold-based method detects the turn if
the changed value of the yaw angle between adjacent steps
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Fig. 1. Map showing pedestrian steps measured by a smartphone IMU and
processed by a conventional PDR algortihm.

exceeds a predefined threshold. This method was developed in
several studies [21], [24], [25] owing to its simplicity and cost-
effectiveness. In the example of Fig. 1, the pedestrian walked
through an arbitrary indoor route while holding a smartphone,
recording motion data of the pedestrian in a time series format
using built-in IMU sensors. Then, the data was processed by
a conventional PDR algorithm to plot the trajectory of the
pedestrian. The dot (black and red) forming the trajectory in
Fig. 1 shows the position estimate of each step. The black dots
show the steps where the pedestrian walked straight, and the
red dots show the steps where the pedestrian turned.

However, this method shows a low detection accuracy
when the length of a turn is longer than usual turns. If the
turn consists of many steps, the yaw angle changes between
adjacent steps in the same turn can vary. Thus, some steps
with yaw angle changes exceeding the threshold are declared
as turns and the others are not, even though those steps belong
to the same turn. As a result, a single turn can be recognized
as multiple erroneous turns if this turn-detection method is
applied.

B. Proposed Threshold-Based Turn Detection Method

To address the aforementioned weakness of the threshold-
based turn detection method, we propose an additional algo-
rithm. When a detected turn step is adjacent to previously
detected turn steps, it is reasonable to consider it as part of
the existing turn sequence. Therefore, in our algorithm, when
multiple turns are in close proximity to each other, they are
treated as a single turn. This approach effectively reduces the
number of erroneously detected turns. The performances of
the existing and proposed methods are compared in Section
V-B.

III. HIDDEN MARKOV MODEL (HMM)-BASED TURN
DETECTION METHOD

A. Existing HMM-Based Turn Detection Method

The hidden Markov model (HMM) is used to deduce input
information by statistically analyzing large amounts of output
data [26], [27]. In order for HMM to be employed in modeling
the pedestrian’s walking behavior, the pedestrian’s prior step
information needs to be maintained to some extent. Therefore,
Gu et al. [23] utilized the HMM algorithm by combining

Fig. 2. Pedestrian walking directions and regions.

Fig. 3. HMM model used for turn detection.

three walking steps as a single state of HMM assuming that a
single turning motion consists of three walking steps. In this
manner, this method can analyze the relationship between the
six adjacent steps (i.e., two states of HMM), rather than two
adjacent steps, while using the HMM algorithm for detecting
a turning motion.

Specifically, the existing method [23] classifies the walking
direction into eight regions according to the angle of the direc-
tion, as shown in Fig. 2. The input used in this classification
process is the walking direction angle θ for each step, and then
the steps are classified into region r to which θ belongs. Since
there are many possible values of a state with three walking
steps (i.e., 8×8×8 = 256 possible values), values that do not
appear and values that appear at low frequency are removed,
and only 14 values (i.e., v1, . . . , v14) are configured through
clustering in this approach.

This method [23] does not detect or calculate the probability
of the pedestrian turning on the following step; instead, it
predicts the probability of being in each of the 14 values
(i.e., v1, . . . , v14). In Fig. 3, the observation matrix At contains
P (v1), P (v2), . . . , P (v14), which represents the probabilities
of each value that the state Xt+1 can have after the state Xt.

Therefore, to perform turn detection based on the infor-
mation obtained from the existing HMM technique [23],
we utilized the probabilities of the possible values for
the next state Xt+1, given the value of the current state
Xt. For instance, suppose Xt has the value v1 and
P (v1) = 0.6, P (v2) = 0.01, . . . , P (v14) = 0.1. In this sce-
nario, Xt+1 has a 60% probability of having the same value
as Xt due to P (v1) = 0.6. If the probability P (vt) of
maintaining the current value vt of state Xt is lower than
50%, it is determined as a turn since the state value is likely
to change with a probability greater than 50%. Conversely, if
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the probability of maintaining the current state value is higher
than 50%, it is determined that the pedestrian does not make
a turn for that state.

However, as depicted in Fig. 1, the process of turning or
walking straight does not always occur in three steps. There are
instances where a turn is completed in one or two steps, and in
some cases, a turn may take more than six steps. Consequently,
the existing HMM approach exhibits limited accuracy in turn
detection. To achieve more effective modeling, it becomes
necessary to capture the broader human gait behavior. In this
regard, we propose a modified HMM algorithm, which will
be elaborated upon in the subsequent subsection.

B. Proposed HMM-Based Turn Detection Method

In the proposed HMM-based turn detection method, we
group steps exhibiting similar behavior into a new entity. This
grouping is necessary because the number of steps required for
a single turn is not always fixed, as assumed in [23], where
three steps were considered. In this paper, we refer to this
linked group of steps as a “block.” Consequently, a block can
consist of as few as one step or as many as ten steps, for
example. In our HMM, each individual state corresponds to
a single block. To determine the length of each block, we
employed the Butterworth bandpass filter. This filter identifies
the peak locations of yaw angle measurements, which can be
considered as change points in a pedestrian’s walking behavior.
The time interval between these peaks is then selected as the
length of a block. This approach enhances the accuracy of
comprehending pedestrian turning behavior in comparison to
existing methods.

The main feature of a pedestrian’s trajectory is the direction
angle θ. This angle, θ, is referred to as the difference between
the body’s yaw plane velocity vector and orientation vector.
We computed the orientation vector using the smartphone
IMU’s gyroscope measurements and obtained the velocity vec-
tor using its acceleration measurements. We categorized θ into
eight discrete state values based on the corresponding regions
for each step, as shown in Fig. 2. Therefore, a pedestrian’s
movement is considered a turn only when it deviates more
than 22.5◦ from the current direction.

The transition matrix and emission matrix, which are mod-
eling parameters of the HMM, are constructed using the
eight possible state values. The process of constructing the
parameters of HMM is as follows:

First, we obtain the region number for each block. There
are eight regions denoted as {r1, r2, r3, . . . , r8} as shown in
Fig. 2. This region number is directly determined based on
the θ information obtained earlier. For example, if 22.5◦ ≤
θ < 67.5◦, the region number for that state or block is r2.
The region of the pedestrian’s first block is designated as r1
and serves as the baseline for the entire walk. If the pedestrian
turns 30 degrees clockwise from the initial walking direction,
for example, the region number changes from r1 to r2.

Secondly, we calculate the transition probabilities. In the
Markov chain, there are several states, and the transition prob-
ability refers to the probability of moving from one state to

another [28], [29]. Therefore, we calculated the probability of
transitioning from one of the eight regions {r1, r2, r3, . . . , r8}
to another, as presented in Table I.

The third step is to obtain the emission probabilities, which
represent the probability distribution of observing evidence At

in a given state Xt. Each state Xt corresponds to one of the
eight regions shown in Fig. 2. The evidence At refers to the
status of the pedestrian, indicating whether they are turning or
walking straight. Consequently, the emission matrix represents
the probabilities of the pedestrian turning or not turning at each
region, as listed in Table II.

A turn is detected if the probability of staying in the
current state value at the following state is less than 0.5. The
performance of both the existing and proposed methods is
compared in Section V-B.

IV. PRUNED EXACT LINEAR TIME (PELT)
ALGORITHM-BASED TURN DETECTION METHOD

A. Existing PELT-Based Turn Detection Method

To detect a turn, it is necessary to define the point at which
the turn occurs, indicating a rapid change in the statistical
properties [22], [30]. In the pruned exact linear time (PELT)
approach, pruning is carried out at the current time step if
the current cost is less than the cost at the potential change-
point plus the extra segment cost. For a given set of data
X = (x1, x2, ..., xn), let t0 = 0, tk+1 = n, and t1, t2, ..., tk
be the points of change in chronological order. These points
of change are the ones that minimize the following equation
[22]:

k+1∑
i=1

(
C
(
xti−1+1:ti

)
+ β

)
(1)

where xa:b = (xa, xa+1, ..., xb) (a ≤ b), C(xa:b) is the cost
function of xa:b, and β represents the penalization to prevent
overfitting.

However, in the PELT approach, there were instances where
a genuine turn was missed, occurring in 44.67% of the cases.
To enhance the performance of the model, an anomaly de-
tection algorithm was incorporated to improve its capabilities.
Anomaly detection involves identifying rare observations that
significantly deviate from the majority of the data and do not
conform to normal behavior. By incorporating this algorithm,
the model becomes more adept at detecting such anomalies
and improving overall performance.

B. Existing IF-Based Turn Detection Method

In our study, the isolation forest (IF) algorithm was utilized
for anomaly detection. The isolation forest operates on a tree-
based structure by randomly partitioning the data to isolate
all observations, as shown in Fig.4 [31]–[33]. The algorithm
is based on the simple principle that isolating anomalies is
easier than isolating normal data [34], [35]. Outliers tend to
be closer to the root node of the tree, resulting in shorter path
lengths [36], [37]. By employing a collection of trees that are
randomly fitted to the data, we can calculate the average depth
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TABLE I
TRANSITION MATRIX USED IN THE PROPOSED HMM-BASED METHOD

Transition Matrix
region r1 r2 r3 r4 r5 r6 r7 r8
r1 0.5921 0.0542 0.0244 0.0105 0.0294 0.0114 0.0162 0.0705
r2 0.0950 0.7808 0.1389 0.0056 0.0037 0.0030 0.0015 0.0041
r3 0.0257 0.1220 0.7311 0.0670 0.0074 0.0000 0.0015 0.0062
r4 0.0515 0.0079 0.0944 0.8406 0.1532 0.0068 0.0015 0.0041
r5 0.0277 0.0068 0.0044 0.0664 0.6949 0.0781 0.0103 0.0073
r6 0.0416 0.0090 0.0011 0.0050 0.1029 0.8225 0.1521 0.0093
r7 0.0238 0.0056 0.0000 0.0019 0.0049 0.0698 0.7061 0.0870
r8 0.1426 0.0102 0.0056 0.0031 0.0037 0.0083 0.1108 0.8104

TABLE II
EMISSION MATRIX USED IN THE PROPOSED HMM-BASED METHOD

Emission Matrix
turn r1 r2 r3 r4 r5 r6 r7 r8
O 0.0812 0.1085 0.1300 0.1011 0.1360 0.0979 0.1773 0.1192
X 0.9188 0.8915 0.8700 0.8989 0.8640 0.9021 0.8227 0.8808

Fig. 4. Tree of isolation forest.

at which outliers occur within the trees. This average depth
is then used to generate a final score reflecting the degree of
“outlierness” for each data point.

By utilizing the IF algorithm, outliers can be effectively
detected. We considered nine types of IMU data, including
acceleration, gravitational force, and magnetic field along the
x, y, and z axes, as the input data. It was observed that there are
differences in this data within steps that involve turning [38].
Therefore, turns can be detected through the IF algorithm,
which detects outliers from the given data.

C. Proposed PELT+IF-Based Turn Detection Method

We employed the IF algorithm to address the limitations of
the PELT approach. When using the PELT algorithm, the false
alarm rate was low (6.97%), but there was a significant missed
detection rate (44.67%). In cases where an outlier exhibited
distinct characteristics, it was challenging for the PELT algo-
rithm to recognize it as a “point of change.” However, it is
highly probable that such outliers represent actual points of
change, thus necessitating their detection through the use of
the IF algorithm.

In the IF algorithm, a scoring process is employed to
determine the extent to which a separated point should be
considered an outlier. This scoring process helps establish a
threshold for identifying outliers based on their deviation from

the original data. The scoring calculation in the IF algorithm
is performed using the following equation [32]:

s (x, n) = 2−
E(h(x))

c(n) (2)

Here, h(x) represents the path length of the corresponding
observation, E(h(x)) denotes the average path length for
that observation across all iterations, and c(n) represents the
average path length of the tree used to determine h(x).

For normal data, where the observed value x is similar to
the average path length, E(h(x)) converges to c(n), resulting
in a score of approximately 0.5 [39], [40]. However, if the
observed value x is an outlier, E(h(x)) tends to converge to
0, leading to a score close to 1. Since the maximum path length
of the observation x is E(h(x)) = n−1, the score s(x, n) falls
within the range of 0 to 1. A score greater than 0.5 indicates a
higher likelihood of being an outlier, while a score less than or
equal to 0.5 indicates normal data. The pollution parameter in
IF [41] controls the threshold for determining when a scored
data point should be considered an outlier. We experimentally
set the pollution parameter to 0.05 to achieve the best result.

V. TEST RESULTS

A. Data Collection

A total of 58 instances of sensor log data collected in the
laboratory were utilized as both input and output data values.
These nine types of IMU data encompassed the acceleration
along the x-axis, acceleration along the y-axis, acceleration
along the z-axis, gravitational force along the x-axis, gravi-
tational force along the y-axis, gravitational force along the
z-axis, magnetic field along the x-axis, magnetic field along
the y-axis, and magnetic field along the z-axis.

B. Experiment Results

The performance of the proposed methods in Sections II-B,
III-B, and IV-C was evaluated by analyzing missed detections
and false alarms. Missed detection refers to cases where a turn
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TABLE III
PERFORMANCE COMPARISON BETWEEN TWO THRESHOLD-BASED

ALGORITHMS IN TURN DETECTION

Missed detection False alarm

Existing
algorithm 20.35% 10.45%

Proposed
algorithm 20.35% 7.65%

TABLE IV
PERFORMANCE COMPARISON BETWEEN TWO HMM-BASED ALGORITHMS

IN TURN DETECTION

Missed detection False alarm

Existing
algorithm 7.11% 30.33%

Proposed
algorithm 5.14% 2.00%

is not recognized among all the actual turns. On the other hand,
false alarms occur when a turn is incorrectly identified even
though no rotation has taken place. The occurrence of these
cases was quantified as probabilities.

1) Threshold-Based Turn Detection Method Performance:
Among the 159 collected ambulation data, we computed the
missed detection and false alarm rates for accurately detecting
1,979 executed turns. In the existing threshold-based turn
detection method, the missed detection rate was determined to
be 20.35%, while the false alarm rate was 10.45%, as indicated
in Table III. For the proposed threshold-based turn detection
method, the missed detection rate was found to be 20.35%,
and the false alarm rate was 7.65%.

2) HMM-Based Turn Detection Method Performance: The
performance of the HMM methods is presented in Table IV.
When using the existing HMM algorithm, the missed detection
rate was 7.11%, and the false alarm rate was 30.33%. This
algorithm is considered unreliable as it frequently identifies
steps as turns, even when no actual turns are performed. In
contrast, the proposed HMM algorithm achieved a missed
detection rate of 5.14%, and a false alarm rate of 2.00%, which
is significantly lower than the existing method. Particularly,
there was a significant improvement in the false alarm rate by
the proposed method.

3) PELT+IF-Based Turn Detection Method Performance:
The missed detection rate accounted for 44.67% of the total
1,979 turns, while the false alarm rate was 6.97%. In the
case of the PELT-based turn detection method, a noticeable
“overlap” occurred, where rotations that had already been
detected were detected again. This overlap occurred 305 times
out of a total of 1,979 turns. Notably, overlaps tend to
occur when there is a prolonged change in the yaw angle,
making it inappropriate to consider it as a single point. As

TABLE V
PERFORMANCE COMPARISON BETWEEN TWO PELT-BASED ALGORITHMS

IN TURN DETECTION

Missed detection False alarm

Existing
algorithm 44.67% 6.97%

Proposed
algorithm 8.93% 6.97%

there are many instances of overlap where the same point
is recognized as multiple turns, the missed detection rate
significantly increases.

To evaluate the effectiveness of the added IF algorithm for
reducing the missed detection rate, we examined its ability to
detect the missed detection portion of the original PELT al-
gorithm. Using the same dataset, 80% of the missed detection
cases of PELT were accurately detected as turns. This led to a
reduced missed detection rate of 8.93%, while the false alarm
rate remained at 6.97%.

VI. CONCLUSION

In this study, we proposed three new approaches to detect
pedestrian turning motions based on smartphone IMU infor-
mation. The limitations of existing methods in turn detection
were investigated. Among the three proposed algorithms, the
HMM-based algorithm demonstrated the best performance
with a missed detection rate of 5.14% and a false alarm rate of
2.00%. This turn detection algorithm can be applied to enhance
indoor map matching performance for pedestrian navigation
systems.
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