979-8-3503-1327-7/23/$31.00 ©2023 IEEE

Traffic-Efficient Split Computing Mechanism for
Internet of Things

Hojin Yeom, Haneul Ko

Department of Electronics and Information Convergence Engineering

Kyung Hee University
Yongin-si, Gyeonggi-do, Korea
{hjy5323,heko} @khu.ac.kr

Abstract—In the split computing approach, channel coding
can be exploited to transmit the intermediate data, balancing
the tradeoff between accuracy and traffic overhead. In this
paper, we propose a traffic-efficient split computing mechanism
(TESC) in which the IoT device decides whether to exploit
channel coding and its error correction capability according to
the channel condition to transmit the intermediate data to the
edge cloud. Evaluation results show that TESC can reduce the
traffic overhead by over 80% while maintaining the accuracy of
the model at a high level compared to the retransmission-based
scheme.

Index Terms—Split computing, Split ML, distributed comput-
ing, inference, Internet of Things

I. INTRODUCTION

Deep neural networks (DNNs) have emerged as a dominant
machine learning technique for intelligent IoT applications
due to their reliable and precise inference capabilities [1].
However, despite the increased computational capability of the
latest IoT devices, they still face difficulty in achieving the de-
sired inference latency when using complex DNN models [2].
As one of the promising solutions to reduce the inference
latency, there is increasing interest in split computing [3]. For
the split computing, the DNN model is split into head and
tail models, and these models are allocated to IoT device and
the computing node (e.g., edge cloud) at the network side,
respectively. After that, IoT device can conduct the inference
of the head model and transmit the output of the head model,
called intermediate data, to the computing node. Subsequently,
the computing node can use the intermediate data as an input
of the tail model to derive the final result of the DNN model.
After obtaining the result, the computing node returns it to
IoT device.

Meanwhile, the intermediate data should be transmitted
through a wireless link having relatively high error rate in
IoT networks. Errors in the intermediate data can degrade
the accuracy of the DNN model. To avoid the accuracy
degradation, when detecting a packet error, the computing
node can request retransmission of the intermediate data to
IoT device for the error correction. However, if IoT device
has poor channel conditions (leading to numerous and frequent
errors), there is a significant increase of the traffic overhead.

Instead of the retransmission, to correct the errors with
small traffic overhead, the channel coding can be utilized [4].

494

Sangheon Pack
School of Electrical Engineering
Korea University
Seoul, Korea
shpack @korea.ac.kr

The channel coding is a digital communication technique that
the sender adds a few bits of redundant data to the original
data for the bit error correction at the receiver side. Unlike
the retransmission method, which repeatedly sends the entire
packet until it succeeds, when using the channel coding, IoT
device transmits the channel coded packet (i.e., original data
plus redundant data) once. Thus, when using the channel
coding, the traffic overhead can be reduced compared to when
using the retransmission.

Meanwhile, the ability how many bit errors can be corrected
at the receiver side (called the error correction capability)
depends on the number of redundant bits. Intuitively, to reduce
the traffic overhead while correcting most bit errors, the
number of redundant bits (i.e., error correction capability)
should be decided by considering how many bit errors are
expected to occur. For example, if the small number of bit
errors is expected, even though only few redundant bits are
added to the original data, most of errors can be corrected.
On the other hand, under poor channel conditions, a higher
error correction capability can be selected (i.e., more bits can
be added to the original data) to correct more bit errors.

In this paper, we propose a traffic-efficient split computing
mechanism (TESC). In TESC, to minimize the traffic overhead
while achieving high accuracy of the model, IoT device
decides whether to exploit the channel coding (i.e., Reed-
Solomon (RS) code) and the error correction capability of
the channel coding according to the channel condition to
transmit the intermediate data to the edge cloud. Specifically,
if the channel condition is better than a specific channel
state threshold, IoT device does not use the channel coding.
Otherwise, IoT device exploits the channel coding with the
appropriate error correction capability for the channel condi-
tion. Evaluation results show that TESC can reduce the traffic
overhead by over 80% while maintaining the accuracy of the
model at a high level compared to the retransmission-based
scheme.

The remainder of this paper is structured as follows: Sec-
tion II introduces TESC; Section III presents and discusses
the evaluation results; and Section IV presents the final con-
clusions.

ICTC 2023

II. TRAFFIC-EFFICIENT SPLIT COMPUTING MECHANISM

Basically, we consider the system model where [oT device
carries out the inference of the DNN model by using the
split computing approach with the edge cloud. Specifically, to
reduce the traffic overhead while maintaining high accuracy
of the model, IoT device introduces TESC. The detailed
procedure of TESC (i.e., flow chart) is shown in Figure 1.

First, IoT device carries out the DNN inference for the
head model. This head inference produces intermediate data.
After that, the channel condition C' (i.e., signal-to-noise ratio
(SNR)) is checked before transmitting the intermediate data
to the edge cloud. The channel condition C' is then com-
pared with several pre-defined channel condition thresholds
A = [0g,01,02,04,08,016], Where O indicates the channel
condition threshold with the error correction capability ¢.
Through comparing C' to A, TESC selects the appropriate
error correction capability. For example, if do > C > {4,
the error correction capability ¢ is set to 4. Note that, when
C > Jp, which means that the channel condition is good
enough, the channel coding is not needed. Additionally, if
t becomes 32, which means that there is no more J; in
A to iterate, TESC moves on to the next step. Note that,
since higher error correction capability indicates that more
additional bits for the channel coding should be added to the
original data, appropriate channel correction capability should
be selected to correct the errors with small traffic overhead.
After selecting the error correction capability ¢, TESC applies
the channel coding to the intermediate data. Specifically, TESC
exploits the RS code [5] with the error correction capability
t, represented by RS(t).! After applying RS(t), IoT device
transmits the channel coded intermediate data to the edge
cloud. After receiving the intermediate data, the edge cloud
corrects the errors in the intermediate data (if ¢ is 0, since
no channel coding is applied, skip correcting error). Then, by
using the intermediate data as an input of the tail model, the
edge cloud conducts the inference of the tail model. Then, the
edge cloud transmits the inference result to IoT device.

III. EVALUATION RESULTS

To show the effectiveness of TESC on the inference accu-
racy and traffic overhead, we compare it with the following
three schemes: 1) NOERRC where the intermediate data is
transmitted without any error correction method; 2) FIXCAP
where the intermediate data is transmitted using the RS
code with the fixed error correction capability regardless of
channel condition; 3) RETX where the intermediate data is
retransmitted until the data arrives successfully at the edge
cloud.

The default simulation settings are as follows. For the
inference, we use VGG16 [6] with CIFAR10 dataset [7].
VGG16 model is divided in half and the first and second
half of the models are used as the head and tail models,

The RS code is characterized by the total data length n, the original data
length k, and the error correction capability ¢. The relationship between these

parameters is given by ¢ = % Note that the RS code is able to correct up
to ¢ symbol errors.

495

Conduct the inference of
head model

|

Check channel condition C

l

Initialize t « 0, x < 0

t « 2%,

[xex+1 7]
False Y
For 6; in A
If(C =6,

True or t = 32
v

Apply channel coding
with RS(t)

|

Transmit intermediate data

IoT device

_____+____

Correct errors

I

Conduct the inference of
tail model

l

Transmit inference result
to IoT device

Edge cloud

Fig. 1. Flow chart of TESC.

respectively. In addition, it is assumed that IoT device uses
QPSK to transmit the intermediate data and bitwise errors in
the intermediate data occur according to SNR.

Figures 2(a) and (b) show the effect of SNR on the average
accuracy and the traffic overhead ratio, respectively. The traffic
overhead ratio is normalized based on the traffic overhead of
NOERRC. That is, the traffic overhead ratio represents the
ratio between the traffic overhead of each scheme and that of
NOERRC. From Figures 2(a) and (b), it can be observed that
TESC can obtain high accuracy while maintaining the traffic
overhead at low level. This is because TESC decides the error
correction capability according to the current channel condi-
tion (i.e., SNR). For example, when the channel condition is
good enough (i.e., SNR > 17 dB) that the channel coding
is not needed, TESC does not use the channel coding. On
the other hand, when SNR is less than 17 dB, TESC selects

Average Accuracy
o o o o
w B w o
) L L L

e
N}
L

e
-
L

SNR(dB)

(a) Average accuracy.

TESC
NOERRC
FIXCAP
RETX

N N w w »
<) n) 8] o
! | ! | !

Traffic Overhead Ratio

=
5}
L

g
=}
L

SNR(dB)
(b) Traffic overhead ratio.

Fig. 2. Effect of SNR.

appropriate channel correction capability to correct the error
with small traffic overhead.

Meanwhile, from Figure 2(a), it can be shown that the
average accuracy of RETX is always the highest regardless of
SNR. However, this does not imply that RETX is better than
TESC. Since RETX retransmits the intermediate data until it
arrives at the edge cloud without any error, RETX experiences
significant high traffic overhead when SNR is less than 15 dB
(see Figure 2(b)).

IV. CONCLUSION

In this paper, we introduce a traffic-efficient split computing
mechanism (TESC) for IoT applications. By adaptively select-
ing the error correction capability according to the channel
condition, TESC optimizes the tradeoff between the inference
accuracy and traffic overhead. Evaluation results demonstrated
that TESC can achieve high accuracy while significantly re-
ducing traffic overhead compared to conventional error correc-

496

tion techniques under various channel conditions. This implies
that TESC is a promising approach for future IoT applications,
especially in unstable and fluctuating channel condition sce-
narios. In our future work, we will devise a method to decide
the channel condition threshold. In addition, we will extend the
proposed mechanism to determine the optimal splitting point
and error correction capability simultaneously.

ACKNOWLEDGE

This research was supported by Institute for Information
& communications Technology Planning & Evaluation (IITP)
Grant (No. 2022-0-01015).

REFERENCES
(1]
[2]

K. Qu et al., “Stochastic Cumulative DNN Inference with RL-Aided
Adaptive IoT Device-Edge Collaboration,” IEEE IoT-J, to appear.

S. Kim and H. Ko, “Distributed Split Computing System in Cooperative
Internet of Things (I0T),” IEEE Access, vol. 11, pp. 77669-77678, Jul.
2023.

A. Ayad et al., “Improving the Communication and Computation Effi-
ciency of Split Learning for IoT Applications,” in IEEE GLOBECOM
2021, Dec. 2021.

T. Venugopal and S. Radhika, “A Survey on Channel Coding in Wireless
Networks,” in Proc. ICCSP 2020, Jul. 2020.

S. Kumar and R. Gupta, “Bit error rate analysis of Reed-Solomon code
for efficient communication system,” IJCA, vol. 30, no. 12, pp. 11-15,
Sep. 2011.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in Proc. ICLR 2015, May 2015.
A. Krizhevsky, Learning multiple layers of features from tiny images,
20009.

[3]

[4

=

[5]

[6

—

[71

