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Abstract—The Handover (HO) problem is widely explored by
the research industry. In the dense traffic, the vehicles move
at a lower speed, which means the vehicles will spend more
time in the coverage holes. The absence of a communication
link from the Next Generation NodeB (gNB) will degrade the
Quality of Service (QoS) requirement of users. This motivates
us to propose Unmanned Aerial Vehicles (UAVs) (e.g., drones) as
temporary base stations to serve the traffic of User Equipments
(UEs) in peak hour conditions. To overcome the HO delay, we
propose a machine learning-based proactive HO scheme. In this
paper, we train a Long Short-Term Memory (LSTM) model
using Reference Signal Received Power (RSRP) values to predict
and optimize HO decisions. Experimental results show that a
UAV-assisted HO strategy can significantly enhance network
performance in terms of the reduction of both Ping-Pong Rate
and End-to-End Delay as performance metrics.

I. INTRODUCTION

Vehicles are moving on the highway, and experience fre-
quent Handovers (HO). An increase in the frequency of HO
and its interruption time disrupts the connectivity and results
in the degradation of users’ Quality of Service (QoS) per-
formance [1], [2]. The dense deployment of Next Generation
NodeB (gNBs) on the highways is cost-ineffective, as the
high traffic density is only limited to peak hours conditions.
The deployment of UAVs as aerial Base Stations (BS) can
provide cost-effective wireless communication to users. Un-
manned Aerial Vehicle (UAVs) providing Line-of-Sight (LoS)
communication, is likely to deliver reliable and on-demand
wireless communication to the desired area [3]. The UAV
communication mainly includes UAV mobile relaying, UAV
small cells, and UAV-enabled traffic offloading [4].

Conventional HO in 5G consists of three phases such as
preparation, execution, and completion, as shown in Fig. 1.
This conventional HO procedure takes a substantial amount of
time increasing the HO interruption time (HIT). The increase
in HIT is directly related to users’ QoS [1]. Additionally, the
directional mmWave imposes several challenges, like cover-
age blindness, in HO procedure. The candidate gNB of HO
vehicles should be proactively prepared about the beam pair
to avoid the exhaustive beam searching procedure, which is
likely to increase HIT and degrade QoS performance.

Authors in [5], [6] propose a Machine Learning (ML)-based
model to predict the Reference Signal Received Power (RSRP)

Fig. 1: Handover procedure

of the access point to analyze the HO trigger decision. Authors
in [7] propose an artificial neural network-based HO protocol
that takes both user and network satisfaction into account by
considering both QoS and Quality of Experience (QoE) during
and after HO. Authors in [8] proposes federated learning-
based proactive HO to reduce the number of unnecessary
HOs and HO delays simultaneously. Authors in [9] propose
an ML-based HO in both sub-6GHz and mmWave integrated
vehicular networks. Authors in [10] proposed an LSTM-based
HO scheme for UEs in 5G networks. They presented only a
concept of LSTM-based HO for proactive HO management,
but did not prove the concept through either simulation or
experiment. Additionally, before using LSTM, we reduced
RSRP noise by employing a Kalman Filter (KF) for training.

The abovementioned work considers full coverage of the
highway by the gNB, which is impractical owing to the
deployment cost. But the highways are crowded only during
peak traffic conditions, so serving the traffic with temporary
BSs can reduce the hefty installation cost. Additionally, the
existing work does not consider the relevance of the beam-
forming procedure, which is crucial in mmWaves bands. The
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Fig. 2: A system model for proactive handover with UAV as an aerial base station

beam searching procedure will increase the complexity of the
HO process, especially in moderate user density to high user
density [11]. The candidate gNB of the HO vehicle should be
proactively prepared, having information on the suitable beam
pair to align with the vehicle coming towards it. Therefore,
this research focuses on three major directions:

• Use of aerial BSs (eg. UAVs like drones) to deal with
coverage holes in the highways.

• Proposal of proactive handover to reduce unnecessary
HOs, HO delay, and throughput of the users

• Consideration of the relevance of beamforming to avoid
coverage blindness due to directional beam in mmWaves
band.

The rest of the paper is organized as follows: Section 2
describes the preliminary study which includes a discussion
on conventional HO procedure, KF, and LSTM. Section 3
describes the HO problem in vehicular communications and
our proposed idea. The simulation setting and simulations
results are described in Section 4 followed by the conclusion
in Section 5.

II. PRELIMINARY STUDY

A. Conventional Handover Procedure

As shown in Fig. 1, a vehicle as a UE establishes a connec-
tion with a Target gNB (T-gNB), including synchronization
and Random Access (RA), during the execution phase after
disengaging from its Source gNB (S-gNB). The S-gNB also
sends a status transfer message to the T-gNB, including the
downlink and uplink sequence numbers, while forwarding the
UE’s downlink data to it. The fundamental network entities
change their pathways and alter the bearer configurations
throughout the completion phase. The UE context is then
released in the S-eNB by the T-eNB by sending a HO
complete (HO Complete) message to the S-eNB. However,
the HO operation may not succeed if the HO control mes-
sages are not sent or if a Radio Link Failure (RLF) takes
place while it is being performed. Compared to the other
phases, the preparation phase has a higher likelihood of the
UE experiencing numerous HO message delivery failures or

RLF since it is conducted when the S-eNB signal quality is
poor and T-eNB interference is significant. Since this is the
case, the basic HO’s preparation phase is when it is most
vulnerable. Additionally, due to the mmWave bands’ unusually
high shadowing sensitivity, HO Failure (HOF) occurs more
frequently in this instance. This is because the connection
between the UE and the serving cell is more easily broken,
so HO message delivery fails regardless of the target cell’s
connectivity.

B. Kalman Filtering

High noise levels are most likely present in the received
RSRP measurement. Therefore, filtering RSRP readings is
essential to obtaining exact information. In our system, RSRP
data is preprocessed using a KF before being sent to an ML
classifier. The raw RSRP data is first smoothed using a KF,
and then it is supplied to the ML algorithm for HO prediction.
The KF is considered an optimal solution for many signal
processing and prediction tasks that have linear system models
with Gaussian noise. The KF algorithm consists of two stages:
Prediction and update procedure to obtain the state of the
system [12], [13]. The system can be described as

𝑆𝑆𝑡𝑡+1 = Φ𝑆𝑆𝑡𝑡 + 𝑁𝑁𝑡𝑡 , (1)

where 𝑆𝑆𝑡𝑡 is the state vector of the system at the time step 𝑡𝑡, Φ
is the state transition matrix of the system from time step 𝑡𝑡 to
𝑡𝑡 + 1, and 𝑁𝑁𝑡𝑡 is the white noise that has a known co-variance
matrix 𝑄𝑄. The measurement equation of the system can be
described as follows:

𝑀𝑀𝑡𝑡 = 𝐻𝐻𝑆𝑆𝑡𝑡 +𝑉𝑉𝑡𝑡 , (2)

where 𝑀𝑀𝑡𝑡 is a measurement state vector of s at time 𝑡𝑡,
𝐻𝐻 is the connection matrix for the measurement, and 𝑉𝑉𝑡𝑡 is
a measurement error with the known co-variance matrix as
𝑅𝑅. The error co-variance 𝑄𝑄 of the system and 𝑅𝑅 of the
measurement are given as 𝑄𝑄 = [𝑈𝑈𝑡𝑡𝑈𝑈

𝑇𝑇
𝑡𝑡 ] and 𝑅𝑅 = [𝑉𝑉𝑡𝑡𝑉𝑉

𝑇𝑇
𝑡𝑡 ],

respectively. The state update equation is given by

𝑆𝑆𝑡𝑡 = 𝑆𝑆′𝑡𝑡 + 𝐾𝐾𝑡𝑡 (𝑀𝑀𝑡𝑡 − 𝐻𝐻𝑆𝑆′𝑡𝑡 ), (3)
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where 𝑆𝑆𝑡𝑡 is an estimate of the system state 𝑆𝑆𝑡𝑡 and the prior
estimate of 𝑆𝑆′𝑡𝑡 , and 𝐾𝐾𝑡𝑡 is the Kalman gain obtained by the
following equation:

𝐾𝐾𝑡𝑡 = 𝑃𝑃′
𝑡𝑡𝐻𝐻

𝑇𝑇 (𝐻𝐻𝑃𝑃′
𝑡𝑡𝐻𝐻

𝑇𝑇 + 𝑅𝑅)−1
. (4)

The mean square error (MSE) co-variance 𝑃𝑃′
𝑡𝑡 of the system

can be given by

�̂�𝑃𝑡𝑡 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡𝐻𝐻)𝑃𝑃′
𝑡𝑡 , (5)

where 𝐼𝐼 is the identity matrix, and the prior MSE co-variance
𝑃𝑃′
𝑡𝑡 is updated by

ˆ𝑃𝑃′
𝑡𝑡+1 = Φ𝑃𝑃𝑡𝑡Φ

′ +𝑄𝑄, (6)

and the prior system state for next step is given by

ˆ𝑆𝑆′
𝑡𝑡+1 = Φ𝑆𝑆𝑡𝑡 . (7)

Using the aforementioned prediction and update procedure, we
can filter noises to obtain the true system state.

C. LSTM

The long-term storage capability of LSTM [14] allows it to
learn the long-term dependencies within a sequence. At the
time slot 𝑡𝑡, an LSTM cell has an input layer 𝑋𝑋𝑡𝑡 and an output
layer 𝑌𝑌𝑡𝑡 . In this instance, the dataset is 𝑋𝑋t and the class labels
are 𝑌𝑌 t. LSTM consists of a memory cell, an input gate 𝐼𝐼𝑡𝑡 , an
output gate 𝑂𝑂𝑡𝑡 , and a forget gate 𝐹𝐹𝑡𝑡 where the update equations
are given by Equations (8), (9), and (10). The gates [15] the
flow of information into and out of the memory cell, which is
where information is stored.

𝐹𝐹𝑡𝑡 =𝛼𝛼(𝑊𝑊 𝑓𝑓 𝑓𝑓𝑋𝑋𝑡𝑡 +𝑊𝑊 𝑓𝑓 𝑓ℎ𝑡𝑡−1 + 𝑏𝑏 𝑓𝑓 ), (8)
𝐼𝐼𝑡𝑡 =𝛼𝛼(𝑊𝑊𝑖𝑖𝑓𝑓𝑋𝑋𝑡𝑡 +𝑊𝑊𝑖𝑖𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖), (9)
𝑂𝑂𝑡𝑡 =𝛼𝛼(𝑊𝑊𝑜𝑜𝑓𝑓𝑋𝑋𝑡𝑡 +𝑊𝑊𝑜𝑜𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜). (10)

Using Equations (8), (9), and (10), the cell state 𝐶𝐶𝑡𝑡 and the
output 𝑌𝑌𝑡𝑡 are updated by the following equations:

𝐶𝐶𝑡𝑡 = 𝐹𝐹𝑡𝑡 ⊛ 𝐶𝐶𝑡𝑡−1 + 𝐼𝐼𝑡𝑡 ⊛ tanh(𝑊𝑊𝑐𝑐𝑓𝑓𝑑𝑑𝑡𝑡 +𝑊𝑊𝑐𝑐𝑓𝑌𝑌𝑡𝑡−1 + 𝑏𝑏𝑐𝑐), (11)

𝑌𝑌𝑡𝑡 = 𝑂𝑂𝑡𝑡 ⊛ 𝐶𝐶𝑡𝑡 , (12)

where 𝑊𝑊 denotes the weight matrix, 𝑏𝑏 denotes the bias, and
the operator of ⊛ represents an element-wise multiplication of
the vectors.

III. HANDOVER PROBLEM IN VEHICULAR NETWORK

A. System Model

We consider a bidirectional highway network comprising
of gNBs and UAVs, where UAV serves as a temporary BS.
The mmWave-enabled gNBs are deployed along the roadside,
which partially cover the road network, i.e., there exist some
coverage holes on the highway. These coverage holes on the
highway can be served by UAVs, instead of installing more
gNBs, which is cost-ineffective, as shown by Fig. 2. We
consider a directional antenna for both gNBs and UAVs. The
mutual interference between the UAVs and the gNBs can be

Fig. 3: Machine learning model for proactive handover

eliminated by considering orthogonal spectrum sharing. Fig.
2 shows the triggering point and completions of proactive
HO. In the peak traffic condition, i.e., the dense vehicular
traffic scenario, the arrival of the vehicles is assumed to follow
Poisson distribution. The vehicles periodically report their
position, velocity, and channel state information (CSI) to their
serving gNBs.

B. Proposed ML-based Proactive Handover

In dense traffic, vehicles move at a lower speed. This means
that the vehicles will spend more time in the coverage holes.
The absence of a communication link from the gNB will
degrade the QoS requirement of the users. This motivates us
to propose UAV as a temporary BS to serve the traffic in
peak hour conditions as shown in Fig. 2. To overcome the HO
delay, we propose ML-based proactive HO. The major benefit
of considering ML-based proactive HO is that it eliminates
HO execution and completion phase, thus reducing the HO
time.

The RSRP information collected from the vehicles is filtered
to reduce noise, mitigate fading and shadowing effects, and
obtain precise information. We employ KF to smooth the
RSRP signals. The smoothed RSRP data is prepared for the
next step of the proposed method. The filtered time series of
RSRP measurement includes the pattern of RSRP drop and rise
between the Source-gNB/UAV and Target-gNB/UAV, which is
used to train the ML model. The decision whether to initiate
HO or not, is modeled as a Recurrent Neural Network (RNN)
and is used to solve the classification problem [16]. The ML
algorithm is performed in two steps:

• Offline phase: The smoothed RSRP dataset is used to
train the ML algorithm.

• Online phase: The RSRP data of the real-time user
is measured and then compared with the pre-recorded
training data.

With RSRP information, the ML algorithm can also estimate
vehicle positions. Based on the position information, when the
vehicle requests the HO, the candidate BS will be pre-activated
to sweep a beam toward the HO vehicle [17]. The RSRP
information is fed to the trained ML algorithms which can
predict the need of HO online. Fig. 3. demonstrated the step-
by-step implementation of the proposed ML-based algorithm.
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Fig. 4: Simulation setup

Overall, our proposed idea jointly addresses the beamform-
ing and proactive HO problem. The learning-based proactive
HO and efficient beamforming will ensure smooth HO and
maintain the QoS requirements of the end user.

IV. PERFORMANCE EVALUATION AND RESULTS

In this section, we describe the simulation setup followed
by the experimental results.

A. Simulation Setup

The dataset employed in this paper was collected from
an open-source framework for running a computer network
simulator called OMNeT++ [18], which support the simulation
of wired and wireless communications in vehicular networks,
and a road network simulator called SUMO [19], which
supports microscopic road traffic simulation [20]. Simu5G [21]
is a 5G network simulator built on top of OMNeT++ for 5G
radio access networks (RANs) and 5G core networks with
the Simu5G protocol stack [22]. SUMO is a geographic-
based traffic simulator responsible for vehicle mobility in road
networks. An additional module for the UAV was built on
top of the existing module. Additionally, the vehicle used
the Veins for vehicular communications in OMNeT++ [23].
Fig. 4 shows the simulation setup for implementing proactive
HO in 5G and UAV-assisted cellular networks, intending to
improve the QoS requirements of the end users. The simulation
parameters can be found in Table I.

In this work, we consider a highway road that consists of
a total of four lanes, with two lanes in one direction and
the possibility of making U-turns. The signal strength of the
gNB is considered 46 dBm, and the signal strength of the
drone is 23 dBm. Measurements were conducted for 4, 000
vehicles over a period of 48 hours. Vehicles are generated
using Gaussian distribution [24]. The signal strength was
observed as vehicles moved from one gNB to another gNB.
Additionally, RSRP values were denoised using the KF. In
summary, the dataset was gathered from the received signals
of gNBs and drones, and the data was pre-processed for the
creation of an LSTM model.

B. Performance Metrics

1) The average Ping-Pong Rate is calculated as the total
number of movements that are recognized as Ping-

TABLE I: Simulation parameters

Simulation Parameters Value
Number of gNBs 4
Number of drones 6
gNB height 30 m
Drone height 60 m
gNB Tx power 46 dBm
drone Tx power 23 dBm
Average velocity 20 m/s
Road 10 kms
Number of cars 100

Fig. 5: Training data as input to the ML model

Pong patterns divided by the overall number of move-
ments. It is a significant metric that is used to analyze
mobility data, particularly in the context of wireless
communication, mobility-related research, and network
technologies.

2) End-to-End Delay is a critical performance metric that
is used to calculate the delay experienced by the vehicle
in moving from the coverage of one gNB to another
gNB.

C. Simulation Results

Fig. 5 represents the RSRP data reported by the vehicle
to the base station after every 100 ms. The RSRP data here
is filtered using the KF to reduce noise, mitigate fading and
shadowing effects, and obtain precise information. Fig. 6
shows that the predicted RSRP value using LSTM closely
matches the filtered value RSRP value using the KF.
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Fig. 6: Comparison of the predicted RSRP values using LSTM and KF

(a) Loss during LSTM training (b) MAE during LSTM training

Fig. 7: Loss and MAE of the LSTM model during the training process

Fig. 7a shows the training process of the model for a total of
54 epochs, using the Early Stopping feature. The total training
time was approximately 735.63 seconds. As a final outcome
of the training, the model’s loss value reached 0.00166. This
signifies that the model is very effective as the mean squared
error between the actual and predicted values is very close.
Fig. 7b shows the Mean Absolute Error (MAE) was 0.02686,
indicating that the predicted values differ from the actual
values by an average of about 0.02686.

Fig. 8 shows the comparison between Conventional HO
and HO with KF and LSTM for Ping-Pong Rate and End-
to-End Delay. Regarding the Ping-Pong Rate in Fig. 8a, the
Conventional HO demonstrated an average rate of 21.5 %,
while the HO with the KF and LSTM achieved a significantly
improved average rate of 1.2 %. The substantial reduction in
the Ping-Pong Rate with our proposed approach indicates a
remarkable reduction in unnecessary HO events.

In terms of End-to-End Delay in Fig. 8b, the results reveal
that the Conventional HO had an average delay of 790 ms,
whereas the HO with the KF and LSTM achieved a lower
average delay of 585.5 ms. The improved End-to-End Delay
observed with HO using KF and LSTM can be attributed to
two primary factors. This is because the LSTM model was
able to learn the long-term dependencies in the data, which
allowed it to predict future HO events more accurately. This
resulted in fewer unnecessary HOs, which further reduced the
End-to-End Delay.

The combined effect of reduced RSRP noise and LSTM-
based prediction resulted in a more efficient and reliable HO
mechanism with the HO using the KF and LSTM, as reflected
in the results of both the Ping-Pong Rate and End-to-End
Delay. These simulation outcomes demonstrate the superiority
of our proposed HO with the KF and LSTM approach over
the Conventional HO. The integration of KF and LSTM
offers promising solutions for enhancing the performance of
handover operations in vehicular networks.

V. CONCLUSION

In this paper, we evaluate the HO performance in 5G
vehicular communications with the assistance of drones. Here
we propose an ML-based model which consists of two phases,
such as an offline training phase and an online phase for
prediction in real time. The RSRP information is fed to the
trained ML algorithms which can predict the need of HO
online. Our proposed idea jointly addresses the beamform-
ing and proactive HO problem. The learning-based proactive
HO and efficient beamforming will ensure smooth HO and
maintain the QoS requirements of the UEs as end users. We
evaluate the performance of the proposed HO scheme and
the conventional HO scheme based on the Ping-Pong Rate
and End-to-End Delay. As future work, we will enhance our
proactive HO scheme in IP-based vehicular networks with
the efficient combination of a mobility management scheme
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(a) Ping-Pong Rate Comparison (b) End-to-End Delay Comparison

Fig. 8: Performance comparison between Conventional HO and HO with KF + LSTM

such as Proxy Mobile IPv6 (PMIPv6) and Distributed Mobility
Management (DMM).
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