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Abstract—In a heterogeneous Internet of Things (IoT) setup,
it is impractical and requires human intervention to deploy
workloads for every device after enrolment, especially considering
the diverse range of wireless technologies involved. Furthermore,
it is extremely complex to design and develop a large-scale system
that can accommodate and integrate heterogeneous wireless
technologies to achieve interoperability between the devices. As
the number of devices increases, it is necessary to dynamically
adjust workloads to accommodate the growing demand and
maintain quality of service. In this paper we employ a state-of-
art solution called Project-Flotta, which is utilized for managing
edge devices and edge workloads. However, Project-Flotta does
not provide a way of automating and managing heterogeneous
wireless technologies for an IoT service. Therefore, we propose a
system based on Project-Flotta leveraging its kubernetes custom
resources by extending its functionality to adapt diverse wireless
technologies.

Index Terms—Kkubernetes, Project-Flotta, horizontal pod auto
scaling, automation, edge compuning, heterogenous, wireless
sensor

I. INTRODUCTION

IoT covers diverse wireless protocols and devices, but inte-
grating them in mixed setups is challenging [1], [2]. Handling
various devices is complex [3], and cloud-centric approaches
introduce latency [4]. At the same time, edge computing,
dynamic resource management is crucial [5], [6]. Addressing
IoT device heterogeneity, self- configuration is key for QoS in
time-sensitive applications [7], [8]. Kubernetes is popular in
cloud systems for its dynamic resource allocation. Kubernetes
excels in dynamic resource allocation [9], [10]. Kubernetes’
Horizontal Pod Autoscaler (HPA) improves utilization [11],
[12]. Project-Flotta leverages Kubernetes [13], yet lacks sup-
port for diverse wireless devices, needs manual intervention,
lacks load balancing, and struggles with IoT wireless tech [14].
Our study enhances Flotta by proposing:

o An EdgeDeviceAutoConfig Custom Resource (CR) and
Controller for automated edge device management and
configuration based on predefined specifications.

« Extension of Edge Operator, API, and CR to enable
provisioning diverse wireless technologies.

o Edge device-based workload auto scaler (EHPA) for
dynamic workload adjustments.

The rest of the article is organized as follows. Section
II discusses related work and background, Section III
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describes the proposed architecture, Section IV describes
preliminary
The article is structured as follows: Section II delves into
related work, Section III explains the proposed architecture,
Section IV covers the preliminary system implementation, and
Section V concludes and outlines future work.

II. RELATED WORK AND BACKGROUND
A. Related research work

In this section, we provide a brief overview of relevant
literature. While few projects directly relate to our platform,
they share a similar edge computing approach.

In [3], IoT and Cloud integration for addressing hetero-
geneity is explored. Study [4] presents a cluster-based edge
computing system using Docker, Kubernetes, and Prometheus.

For edge computing challenges, [14] introduces a
KubeEdge-based node autoscaler. Additionally, [15] proposes
a traffic-aware autoscaler for IoT in edge computing. All those
have major contributions in Kubernetes.

Further contributions [16]—-[19] enhance Kubernetes HPA
and predictive models for QoS. Notably, Akri [20] supports
edge device auto configuration in Kubernetes. These studies
offer insights into diverse edge computing applications and
challenges.

B. Horizontal Pod AutoScaler

Horizontal scaling involves deploying more Pods in re-
sponse to increased load. This differs from vertical scaling
where more resources like memory or CPU are allocated to
existing Pods. If load reduces and the Pod count is above the
set minimum, the HorizontalPodAutoscaler shrinks the work-
load resource (like Deployment or StatefulSet). When current
metric equals desired metric, application pod count remains
constant. Pseudo code for HPA can be seen in Algorithm 1

III. SYSTEM ARCHITECTURE DESCRIPTION

In this section, we introduce the main conceptual parts
of our proposal and select an open source project, Project-
Flotta, as the framework software. Figure 1 shows the pro-
posed Architecture which is based on Flotta. At the edge,
the Device Plugin component incorporates drivers for diverse
wireless 10T technologies, enabling support for a wide range
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Algorithm 1 Auto-scaling Algorithm [14]
Require: Input:
1: pods: list of application pods in cluster.

2: curPods: current number of application pods.
3: dPods: desired number of application pods.
4: curMetVal: current metric value.

5: dMetVal: desired metric value.

6: HPA_Sync_Period: HPA sync period.

7: while true do

8:  curPods = getCurPods()

9:  curMetVal = getCurMetricValue(app)
10:  dMetVal = getDesiredMetricValue(app)
11:  ratio = %ﬁ{%?l
12: dPods = [ratio x curPods)|
13:  if dPods # curPods then
14: setDesiredPods(app, dPods)

15:  end if

16:  time.sleep(H PA_Sync_Period)
17: end while

of heterogeneous IoT devices. This allows sensor nodes ad-
hering to specific protocols to be discovered and connected.
In heterogeneous setups, devices use various communication
technologies, data formats, and proprietary protocols [8]. Each
Device Plugin converts data formats on a specific wireless
communication model or protocol from the stream of protocols
into a universal format understood by the Device Watcher. The
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Fig. 1. Proposed Architecture

command component controls wireless devices, while services
include user apps. Edge devices are managed centrally by the

Cloud, deploying workloads and monitoring statuses.

For Flotta enhancement, two controllers are introduced:
GlobalEHPA retrieves HPA configs and real-time statuses,
while LocalEHPA manages device scaling and balancing.
EdgeAutoConfig aligns end node devices.

At the device level, LocalEHPA handles scaling and bal-
ancing as device numbers rise.

IV. PRELIMINARY IMPLEMENTATION
A. Testing Setup

We validate our architecture with a practical proof of
concept, integrating open-source tech into a unified system.
Managed by the cloud center, three Flotta edge devices cover
separate locations. Our simulation (Figure 2) mirrors different
sites using VLANs and a 5G UE for connectivity.

Our assumption use case is in agriculture where LoRa serves
large-scale farming, Wi-Fi for greenhouses. The edge device
acts as a LoRa gateway via the LoRa plugin, handling data
from end nodes and actuation commands.

Upstream and downstream communication is done through
Flotta API then Flotta operator, Grafana, InfluxDB, and
kubectl. MQTT transports wireless plugin data, accessible
through for sensor data and interactions on the edge.
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Fig. 2. Setup Topology

B. Preliminary Results

As the research uses Project-Flotta which focuses on small
footprint devices starting from a tiny Raspberry Pi, we started
by assessing resource usage of the introduced components on
the raspberry Pi. After that we gradually increase the number
of IoT devices connected to the edge devices through wireless
technologies (in this case, LoORaWAN and Wi-Fi). Finally, we
test memory usage of the edge devices and the cloud nodes
on the APIs as traffic increases.

On the other hand, to test automated workload deployment,
first we start by creating the EdgeAutoConfig CR shown
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in figure 3 and enroll edge devices on Flotta. If the edge
device properties being registered matches the specifications
in the preferredProperties part, the provided workload is then
deployed to the selected edge device. In the example CR, if
any IoT end nodes are connected to the edge device using
Lora communication, with any of the given properties, the
edge workloads image is deployed for consumption and the
connected device information is added to the Status part of
the CR.

spec:
deviceSelector:
matchlLabels:
device.cpu-architecture: x86_64
preferredProperties:
type: Lora
properties:
profile: EU863-870@
sensors:
- name: temperature
- humidity
identifier: "4fafc201-1fb5-459e-8fcc-c5c9c331914b"
manufacturer: "DCN Lab"
deviceFoundWorkloads:
containers:
- name: lora-ml-filter-app
image: quay.io/vitul234/data-filter:latest
status:
edgedevices:
- name: 67cd3eell334f4242baalefc795d2bbc®
edgedeviceworkloadstate: running

Fig. 3. EdgeAutoConfig CR

V. CONCLUSION AND FUTURE WORKS

Our paper tackles challenges in managing wireless IoT
networks, particularly in heterogeneous setups, with a focus on
resource management for quality of service. Using the open-
source Project-Flotta platform, we pinpoint limitations: lack
of load balancing, edge HPA, and manual workload setup.

To address these, we propose enhancements. Firstly, we
extend Flotta with EdgeDeviceAutoConfig for automated edge
workload deployment. Secondly, we introduce an independent
edge workload manager (EHPA) for dynamic adjustments.

We present initial implementation and testing, planning
more tests for remaining wireless technologies in the future.
This work contributes to efficient IoT network management.
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