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Abstract—This paper introduces a solution for reducing noise
data in wireless sensor networks employing a weighted tensor
robust principal component analysis (WTRPCA) approach. The
proposed method effectively separates the data into normal and
abnormal tensors, facilitating identifying corruption and preserv-
ing key data components. WTRPCA is specifically designed to
optimize this reduced process, and experimental results demon-
strate its superior accuracy compared to existing approaches.

Index Terms—WSNs, Tensor robust PCA, reduce noise, noise,
weight

I. INTRODUCTION

Wireless sensor networks (WSNs) generate a significant
amount of complex data. However, traditional methods that
use vectors or matrices struggle to handle this data effectively.
They fail to maintain the underlying structure and correlations
in the data, leading to a dimension problem. In contrast, ten-
sors, which are multidimensional arrays, provide a better solu-
tion for large-scale and diverse WSN data. They can preserve
linear and multilinear relationships in the data and offer a more
compact representation. Tensor decomposition algorithms are
more efficient than vector decomposition methods when it
comes to extracting information from high-dimensional data,
thanks to their natural compatibility. By applying tensor de-
composition techniques like Tucker, CP, higher-order SVD,
t-SVD, and TT decomposition, it is possible to eliminate
redundancies caused by temporal, spatial, and multi-attribute
correlations in WSN data without compromising its inherent
structure. This decomposition is crucial for representing data
and developing algorithms based on tensors, especially given
the vast amount of data and unknown parameters involved.
Accurately reconstructing acquired data at the sink node in
WSN data processing poses a major challenge, as harsh
environmental conditions can introduce corruption, such as
outliers, noise, or missing data. Traditional tensor RPCA
algorithms [1] may require adjustments because they treat all
singular values equally, disregarding the varying importance
levels of different signal information. The primary contribution
of this study is as follows:

1) Using TRPCA (Tensor Robust Principal Component
Analysis), it is possible to separate data that has been
corrupted with noise into two distinct components. The
first component is a low-rank tensor that represents the
normal data, while the second is a sparse noise tensor
that represents the noisy data.

2) To preserve the principal components of WSN data
and enforce the low-rank structure, the Weighted tensor
nuclear norm (WTNN) is utilized as a constraint.

II. METHOD

A. Basic of RPCA

RPCA (Robust Principal Component Analysis) is an im-
provement over PCA with strong reduction guarantees. It
decomposes a matrix X ∈ Rn1×n2 into a low-rank matrix
L and a sparse matrix S. The goal is to recover L and S
by minimizing the nuclear norm of L and the ℓ1-norm of S,
subject to the constraint X = L + E. The following convex
optimization model is used to recover L and S:

minL,S ∥L∥∗ + λ ∥S∥1 , s.t. X = L+ S, (1)

With ∥·∥∗ indicates the nuclear norm of a matrix, ∥·∥1 the
ℓ1-norm, and λ is a positive weight-adjusting parameter.

B. TRPCA

TRPCA (Tensor Robust Principal Component Analysis) ex-
tends RPCA to handle multi-dimensional data while preserv-
ing the tensor structure. It has found successful applications
in diverse domains such as background subtraction, image
processing, and image reconstruction, specifically addressing
noise corruption challenges in WSNs. In Figure 1, TRPCA is a
method designed to restore low-rank tensors that sparse noise
has corrupted. The expanded form of tensor-based RPCA can
be defined as follows:

minL,S ||L||⋆+λ||S||1 , s.t. X = L+ S, (2)
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Fig. 1: Low-rank and Sparse components decomposition
from noisy observation of TRPCA.

III. THE PROPOSED MODEL

To address the restrictions of using a fixed threshold for
each singular value in the reducing noise problem of WSNs,
the weighted tensor nuclear norm is employed using tensor
singular value decomposition (t-SVD) [4] to recover the miss-
ing values. The weighted tensor nuclear norm of the low-rank
tensor L is the totality of weighted singular values in all frontal
slices of tensor data, where larger singular values receive less
shrinkage to preserve essential data components. [2] proved
that WTNNM corporates to TRPCA help improve the perfor-
mance reconstruction of corrupted data in the computer vision
field. The following is a solution to the low-rank optimization
problem:

Li+1 = argmin
L
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Yi+1 = Yi + µi(Li+1 + Si+1 −X ) (5)

Equation 2 optimization model of the WRTPCA is commonly
solved using the Alternating Direction Method of Multipliers
(ADMM) method. The ADMM algorithm includes a step size,
denoted as µk, in updating the dual variable Y that represents
the augmented Lagrange penalty parameter. Algorithm 1 out-
lines the procedure for utilizing ADMM to separate the low-
rank data and sparse noise tensors from the corrupted data
tensor.

In the Algorithm 1, O indicates an n1 × n2 × n3 with all
its elements set to zero. To stop the ADMM algorithm, the
convergence criterion is defined as:∥Li+1 − Li∥F ≤ ϵ,

∥Si+1 − Si∥F ≤ ϵ, ∥X − Li+1 − Si+1∥F ≤ ϵ. The
Frobenius norm of a tensor data refers to the Euclidean
norm, also known as the ℓ2-norm, which is a measure of
the magnitude or size of the tensor. It is calculated by sum
is taken over all indices (i, j, k) of the tensor, ∥X∥F =√∑n1

i=1

∑n2

j=1

∑n3

k=1 X 2
i,j,k. The operator proxl1,τ (X ) indi-

cates the proximal operator of the ℓ∞-norm of X , given by
proxl1,λ/µi

(X ) = max ((|Xijk| − τ), 0) · sign(Xijk), applied
to all elements Xijk in the tensor.

In the referenced Algorithm 1, the WTSVT operator is
defined (Algorithm 2). In the context of Algorithm 2, diag

Algorithm 1 Weighted tensor robust principal component
utilizing ADMM

1: Input: X ∈ Rn1×n2×n3 with random noise, weight vector
ω, λ = 1√

max(n1,n2)×n3

2: Initialize: L0 = OS0 = O, W0 = O, µ0 = 1 × 10−1,
µmax = 1× 1010, ϵ = 1× 10−8, ρ = 1.1

3: while not converged do
4: Update Li+1 = WTSV T (X − Sk − Yi

µi
, ω, µi)

5: Update Si+1 = proxl1, λ
µi

(X − Li+1 − Yi

µi
)

6: Update Yi+1 = Yi + µi(Li+1 + Si+1 −X )
7: Update µi+1 = min(ρµi, µmax)
8: Verify the convergence criteria ∥Li+1 − Li∥F ≤ ϵ or

∥Si+1 − Si∥F ≤ ϵ or ∥X − Li+1 − Si+1∥F ≤ ϵ
9: end while

10: Output: L, S

Algorithm 2 Weighted tensor singular value thresholding
method

1: Input: Data tensor M ∈ Rn1×n2×n3 , ω, µ
2: R = fft(M, [], 3)
3: for i = 1 to n3 do
4: [U,S,V] = SVD( R(:,:,i))
5: diagS = diag(S)− ω

µ

6: ddiagS = diag(diagS)
7: Û(:, :, i) = U
8: Ŝ(:, :, i) = ddiagS
9: V̂(:, :, i) = V

10: end for
11: U = ifft(Û , [], 3) ,S = ifft(Ŝ, [], 3) , V = ifft(V̂, [], 3)
12: Output: U , S , V

refers to the diagonal elements of a matrix. SV D represents
Singular Value Thresholding, a method that breaks down a
matrix into three matrices: a left singular matrix, a diagonal
matrix containing singular values, and a right singular matrix.
fft represents the Fast Fourier Transform, used to compute
a sequence’s Discrete Fourier Transform (DFT). ifft is the
Inverse Fast Fourier Transform, which reverses the FFT pro-
cess.

IV. EXPERIMENTS AND RESULTS

The NDBC-TAO dataset1 provides the experiment’s tem-
perature, humidity, and pressure data, while the Normals
Hourly of Climate dataset2 supplies temperature, dew point,
and wind speed measurements. The tensor data has a shape of
n1 × n2 × n3, where n1 denotes the number of sensor nodes,
n2 represents the number of features, and n3 describes the
number of time slots. Random Gaussian noise with a mean of
zero and a variance of σ2 = 20 is introduced to both datasets.
A fixed weight of (1, 1.5, 2) is also assigned. Furthermore, the

1https://tao.ndbc.noaa.gov/tao/data download
2https://www.ncdc.noaa.gov/cdo-web/datasets
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noise ratios are 10%, 20%, 30%, and 40%. This study uses
The error ratio as a metric to evaluate performance.

Error ratio =

√∑
j∈n2

∣∣∣
∣∣∣L:j: − L̂:j:

∣∣∣
∣∣∣
2

F√∑
j∈n2

||L:j:||2F
(6)

The error ratio for each attribute in the dataset is determined
by comparing the corresponding lateral slices of the original
low-rank tensor L with the noise-reduced low-rank tensor L̂.

(a) Temp (b) Humidity (c) Pressure

Fig. 2: NDBC-TAO dataset

(a) Temp (b) Dew point (c) Wind speed

Fig. 3: Normals Hourly of Climate dataset

We compare our model WTRPCA with other competing
models such as Robust Principal Component Analysis (RPCA)
[1], Weighted Robust Principal Component Analysis (WR-
PCA) [3], Tensor Robust Principal Component Analysis (TR-
PCA) [5]. The performance of these models is evaluated, and
it is observed that WTRPCA outperforms the other models.
The illustrations referred to as Figure 2 and Figure 3 offer
comparative evaluations of reducing noise performance on
two separate datasets: NDBC-TAO and Climate. These com-
parisons show that the WTRPCA methodology consistently
outperforms other techniques at various noise levels.

V. CONCLUSION

This study introduces a novel approach called WTRPCA
to enhance the accuracy of reducing noise data in WSNs.
Our proposed method addresses the challenge of corruption
by combining a low-rank tensor to represent normal data
and a sparse tensor to capture abnormal data patterns. This
integration enables effective mitigation of corruption effects in
WSNs. To further improve the reduce process, we incorporate

the WTNN, which enhances the extraction of correlations
within frontal slices while recovering low-rank tensors. WTNN
incorporates a weighting mechanism that assigns different
importance to singular values based on their significance.
Through extensive experiments, we evaluate the performance
of our approach using the error ratio metric. The results
clearly demonstrate the superiority of our approach in handling
corrupted data and achieving enhanced accuracy in recovering
the original information within WSNs.
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