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Abstract—Object detection tasks represent one of the most
prevalent areas of study in computer vision, leading to the
introduction of numerous techniques. Among these, the You
Only Look Once (YOLO) series of object detection models
continued to evolve and progress. The latest iterations within
the YOLO family exhibit enhanced performance and quicker
inference times. However, the increased capacities and memory
demands of these models present real-world challenges in terms
of practical deployment. This underscores the importance of
developing lightweight versions of the updated YOLO models
to ensure their applicability in real-life scenarios. In this context,
this study introduces YOLOv7 lightweight, building upon a prior
channel pruning technique employed for YOLOv5. By adopting
the foundational method to align with the YOLOv7 architecture,
we effectively managed to reduce the model’s complexity. Fur-
thermore, this research delves into identifying the appropriate
pruning levels and model configurations tailored specifically for
human detection tasks. In the course of our investigation, we
evaluated the trade-off between performance degradation and
reductions in parameters and computational complexity. This
analysis led us to select a pruning protection ratio of 50%
as the most optimal value. Moreover, this article presents the
optimization of the lightweight YOLOv7 model for efficient
human detection. In essence, our research not only suggests
enhancements to existing methodologies for updated models
but also emphasizes the practical application of such methods
through a comprehensive grasp of the unique characteristics of
updated models.

Index Terms—Deep Learning, YOLOv7, Object Detection,
Pruning, Human Detection

I. INTRODUCTION

Object detection is a crucial task that involves both classi-
fying and localizing objects within an image [1, 2]. Its diverse
applications, such as face recognition [3, 4], video surveil-
lance [5, 6], and action recognition [7, 8], make designing a
portable and efficient detection network a significant focus in
current research.
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One of the major challenges in object detection is strik-
ing the right balance between accuracy and computational
complexity. The emergence of one-stage object detectors,
which achieve faster prediction speeds by simultaneously han-
dling classification and localization, has drawn considerable
attention to YOLO (You Only Look Once) in the object
detection field [9]. Actually, YOLO models have demonstrated
successful application in real-world scenarios such as detecting
workers and small objects within smart factories [10], as well
as performing human detection tasks [11]. However, YOLO
still faces difficulties in meeting the real-time object detec-
tion requirements on portable devices due to the significant
computational resources it demands [12]. Furthermore, the
ongoing concern surrounding up-to-date YOLO models is their
requirement for a high-end computing environment [13].

On the contrary, there has been a growing interest in
developing lightweight deep-learning frameworks to ease the
deployment of models on portable devices [14]. Among these
techniques, pruning methods have proven effective in reducing
the computational burden by removing redundant parameters
from neural networks [15, 16, 17]. For instance, Yin et al. [18]
demonstrated the efficacy of pruning methods in Chinese char-
acter recognition, achieving high performance while reducing
the network size. Moreover, Agarwal et al. [19] showed that
using pruning algorithms for lung segmentation in COVID-19
diagnosis results in low storage requirements and fast model
inference.

We introduce a lightweight object detection model tailored
specifically for human detection tasks within the context of
a smart factory environment. This model can incorporate
the pruning technique applied to YOLOv7, one of the most
recent versions in the YOLO series. Building on the success
of previous pruned YOLO models, we integrate the channel
pruning strategy into YOLOv7. Channel pruning involves
eliminating a set of filters at the channel level in convolutional
layers based on the computational importance of each channel.

Experimental results showcase the effectiveness of our
lightweight model in the human detection task, automatically
and accurately capturing regions of human heads or bodies.
This approach holds great promise for efficient object detection
on resource-constrained devices.

Thus, the main contributions are summarized as follows.
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• We present a lightweight method for YOLOv7, utilizing
the channel pruning strategy. The goal of this method
is to reduce the computational burden when deploying
the model on portable devices. By removing unimportant
channels in the convolutional layers, we can achieve
efficient model deployment without compromising the
high performance of YOLOv7.

• Empirical results validate the effectiveness of our
lightweight method in human detection tasks.

The structure of the paper is organized as follows: Section II
discusses and analyzes recent studies on object detection
and lightweight deep learning. Then, Section III proposes
our lightweight method for YOLOv7. Section IV covers the
experiment settings, dataset, and presents the results obtained
from our method. Finally, in Section V concludes the research
findings and provide an in-depth analysis of the significance
and implications of this study.

II. RELATED WORK

A. Object Detection Using Deep Neural Networks

In recent times, real-time object detection tasks have gar-
nered increased attention, leading to the introduction and
examination of various innovative frameworks. One of the
most widely used detection networks is YOLO [9], known
for its fast inference speed. YOLO employs a single unified
neural network that directly predicts object-bounding boxes
in a one-stage manner. Among the YOLO family of models,
YOLOv7 [20] stands out as one of the latest advancements,
achieving improved prediction accuracy while maintaining
similar inference speed to previous models. YOLOv7 in-
corporates two key improvements: model architecture and
optimization strategies.

In terms of the model architecture, YOLOv7 introduces
Extended-ELAN (E-ELAN), which gradually enhances the
learning ability of the network as the number of computational
blocks increases. The compound model scaling technique is
also employed to address the challenge of changing the in-
degree of a translation layer in concatenation-based models.
Furthermore, YOLOv7 implements additional improvements
to optimize the network effectively. It adopts RepConvN in
place of RepConv, removing identity connections to reparam-
eterize residual and concatenation connections. Additionally,
the model is enhanced with an auxiliary head structure to be
trained under deep supervision [21]. These enhancements col-
lectively contribute to the improved performance of YOLOv7
in real-time object detection tasks.

B. Lightweight Deep Learning

Despite the superior performance of deep neural networks,
their heavy computing requirements pose challenges for real-
world model deployment. To address this issue, numerous
studies have focused on developing lightweight networks
that offer efficiency while maintaining high performance [22,
23, 24]. Lightweight methods can generally be classified

into four main strategies [25]; pruning (“a lightweight deep
learning method that eliminates unnecessary parameters in
the neural network, reducing its size without compromising
performance”) [26, 27], quantization (“an effective technique
involves storing weights, gradients, and activations with fewer
bits, making the model more efficient during both training
and inference stages”) [28], knowledge distillation (“it focuses
on transferring the learned knowledge from a large and
accurate model (teacher model) to a smaller and more efficient
model (student model), effectively compressing the knowl-
edge”) [29], and neural architecture search (“automatically
explores optimized compact architectures to achieve model
compression.”) [30].

C. Model Pruning

In the pursuit of optimizing neural networks, researchers
have recognized that only a subset of parameters actively
contributes to performing specific tasks. This realization has
led to the development of various pruning methods aimed at
reducing the number of parameters in neural networks [15,
16, 17]. Two prominent approaches in the pruning domain are
filter pruning and weight pruning [25].Weight pruning, also
known as unstructured pruning, involves eliminating individual
parameters in a weight matrix [31, 32]. While weight pruning
effectively reduces the model size, it often leads to sparse
weight matrices, which can be inefficient in accelerating
computation on hardware.

On the other hand, filter pruning, or structured pruning,
targets the removal of entire filters from convolutional layers,
based on their importance [33, 34]. This method determines
the relevance of each filter and eliminates them as units from
the network. Compared to weight pruning, filter pruning offers
advantages in real-world scenarios, as it is more compatible
with general frameworks and hardware, making it a preferred
choice in many applications.

III. METHODOLOGY

In this study, we applied the channel pruning method to
achieve the lightweight version of YOLOv7. We adopted the
method [12] and made modifications to tailor it to the specific
structure of YOLOv7.

A. Channel Pruning

The first main implication of the base method lies in its
importance calculation for channel reduction, considering all
components in the convolution module. Unlike general channel
pruning methods that typically follow two steps (1) calculating
the importance of each channel and (2) dropping channels
with low importance based on a threshold, the base method
distinguishes accurately whether channels will be dropped or
retained by leveraging both the convolution kernel and the
BN (Batch Normalization) scale factor. The calculation of
importance (θ) is presented, based on Equation 1.

θi = |γi| ∗
∑
t∈αi

|t|, i ∈ [1, 2, ..., Cout] (1)
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• Cout: Channel number of output feature map
• γi: Scale factor of ith filter
• αi: ith filter of convolution layer

The preservation or removal of each channel is determined
through a comparison with the threshold. The importance
threshold of each channel is set by multiplying the number
of all channels with the pruning protect ratio for each layer.
The pruning protect ratio represents the minimum proportion
of remaining channels and can be set arbitrarily. For example,
if a protection ratio of 0.3 is considered, it means that at least
30% of channels per layer should be retained.

The second implication involves rapid pruning achieved by
combining a fine-tuning step with a sparsity training step.
During training, the L1 regularization coefficient undergoes
changes through cosine decay. A higher coefficient in the
initial training stages can swiftly induce sparsity in the model.
Any drop in accuracy during this stage is subsequently restored
in the later training phases using a smaller coefficient, which
also serves as a fine-tuning mechanism. Additionally, the
sparsity process can be expedited using a soft mask strategy
that assesses channel-level sparsity and intentionally reduces
the scale factor of channels that are nearing sparsity during the
training process. This approach effectively encourages channel
sparsity and leads to faster convergence towards a compact and
efficient model.

In the context of applying YOLOv7, we made two key
modifications. Firstly, we revised the channel reduction target.
While the previous approach for YOLOv5 only involved Conv
modules consisting of convolution and BN layers, in YOLOv7,
both Conv and RepConv layers were considered for channel
pruning. We computed the channel importance within the
Conv and RepConv modules, sorted them, and employed
this information for pruning. For other modules, the original
weights were retained and stored in a new model.

Secondly, we adjusted the iteration process. The origi-
nal method traversed all layers in the model for various
tasks, including importance calculation and storing original
weights. However, this approach wasn’t suitable for YOLOv7
due to structural and depth differences between YOLOv5
and YOLOv7. Consequently, we eliminated the process of
recording previous weights for the SPPF and C3 modules,
unique to YOLOv5. Instead, we incorporated a process akin
to the SPPCSPC module, tailored for YOLOv7. Ultimately,
we restructured the iteration order and inter-layer connectivity
in each backbone and head component to align with these
changes.

In this study, we employed a channel pruning method on
an object detection model and proceeded to train a lightweight
model using a dataset that was meticulously curated for human
detection tasks. The primary aim was to ascertain whether
this approach could effectively reduce the model’s complexity
while preserving object detection performance to a satisfactory
degree. To validate our approach, we trained both the original
model and the pruned model using the same dataset.

IV. EXPERIMENT

The experiments were carried out on an RTX A6000
D6 48GB GPU and the implementation was done in Python
3.7. Our experimentation involved varying the pruning pro-
tection ratio from 10% to 90% and subsequently deriving
lightweight models through weight-based pruning. This was
accomplished using a training dataset specifically designed for
human detection tasks. To ensure a more precise comparison,
factors such as image size, epoch count, and batch size were
maintained identically across the experiments. We focused
on comparing the number of parameters and computational
complexity associated with each pruning protection ratio.

A. Dataset

The experiment was carried out using a lightweight model
on the CrowdHuman dataset [35], which is designed for human
detection. In this dataset, each image contains annotations for
human objects, including both head bounding boxes and body
bounding boxes. This dataset proves useful in scenarios where
body parts might be obscured, as it enables the detection of
heads or visible body regions. An illustration of the dataset is
presented in Figure 1. The complete dataset was divided into
training, validation, and testing sets, with 15,000 images for
training, 4,370 images for validation, and 5,000 images for
testing purposes.

Fig. 1: Examples of dataset

B. Result

Table I presents the results of pruning for each pruning
protection ratio. The comparison of pruned models is based on
three factors: the number of parameters, computational com-
plexity (Flops), and the detection performance (mAP) [36].

Table I illustrates that as the protection ratio decreased,
there was a corresponding reduction in the count of retained
parameters and Flops. Nevertheless, when the protection ratio
dropped below a certain threshold, the detection performance
also experienced a rapid decline. Thus, it becomes crucial to
determine a suitable pruning ratio that ensures both lightweight
characteristics and the preservation of performance.
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Pruning Protection Ratio Layers Parameters Flops mAP
100%(Original) 415 37,201,950 105.1 0.79

90% 415 32,307,876 94.6 0.767
80% 415 27,413,514 75.0 0.763
70% 415 23,142,702 61.9 0.76
60% 415 19,319,628 48.4 0.752
50% 415 15,474,254 35.8 0.74
40% 415 13,058,542 30.2 0.73
30% 415 10,904,020 22.2 0.724
20% 415 9,313,344 17.1 0.712
10% 415 8,238,590 14.4 0.674

TABLE I: Summary of the results

Fig. 2: Changes in parameters and mAP based on the pruning
protection ratio.

Figure 2 illustrates the changes in the number of param-
eters and mAP with respect to the pruning protection ratio.
Similarly, Figure 3 shows the alterations in Flops and mAP.
Notably, when employing a protection ratio of 50%, we noted
a relatively moderate decline in performance despite consid-
erable reductions in parameters and computational workload.
This observation suggests that such a pruning level is well-
suited for tasks with lower complexity, like human detection.

V. CONCLUSION AND DISCUSSION

This study aimed to reduce the computational complexity of
YOLOv7 through channel pruning, building upon a previous
method [12]. We adapted the base method to suit the YOLOv7
architecture and assessed the viability of this approach for
human detection tasks. As a result, we achieved a remarkable
66% reduction in GFlops and a 64% reduction in parameters
using a 50% pruning protection ratio.

The primary contributions of this research lie in the creation
of a lightweight YOLOv7 model based on established pruning
techniques and the exploration of an object detection model
optimized for human detection. Given its intricate structure,
there has been relatively limited investigation into lightweight
iterations of YOLOv7, one of the latest models in the YOLO
series. Developing a lightweight version for YOLOv7 presents
challenges, but this study offers an enhanced methodology that
simplifies the process. By employing existing methodologies

Fig. 3: Changes in Flops and mAP pruning protection ratio.

in a straightforward manner, we propose a practical solution
to make YOLOv7 more lightweight. Therefore, this research
not only showcases the academic potential of refining existing
methods through an understanding of the latest models, but
also validates the effectiveness of the pruning method for
human detection tasks.

Models in the YOLO series are tailored for object detection
and are commonly trained using the COCO dataset [37].
These object detection techniques find application in various
scenarios, from identifying abnormal objects or situations
to detecting specific humans or signs in real-life scenarios.
Depending on the context, the complexity of object detection
tasks can vary, and this study specifically concentrated on
simpler tasks like human detection. Our research aimed to
pinpoint the optimal lightweight level of YOLOv7 for practical
use in real-world human detection scenarios. Consequently,
we successfully determined an appropriate pruning ratio and
achieved promising results for YOLOv7 using a human detec-
tion dataset.

In future work, we will evaluate the efficacy of the proposed
lightweight YOLOv7 for the task of detecting workers within
the context of a smart factory environment. On an academic
front, we envision conducting subsequent investigations that
involve leveraging real-world factory data for training pur-
poses, aiming to enhance object detection performance, par-
ticularly concerning the higher Interaction Over Union (IOU)
threshold.
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