
Opportunistic Task Offloading in UAV-assisted
Mobile Edge Computing: A Deep Reinforcement

Learning Approach
Taewon Song

Department of Internet of Things
Soonchunhyang University

Asan, Korea
twsong@sch.ac.kr

Abstract—Mobile edge computing (MEC) aims to extend cloud
services to the network edge to reduce network traffic and latency
for 5G mobile networks. Unmanned aerial vehicles (UAVs) are
being used as assisted edge clouds for large-scale sparsely-
distributed user equipment, due to their flexible deployment,
wide coverage, and reliable wireless communication. In this
paper, we propose a deep Q learning-based opportunistic task
offloading algorithm for UAV-assisted mobile edge computing. To
this end, we formulate a Markov decision process (MDP) model
in which the UAV can choose whether to offload tasks to the
cloud server or process them on the local MEC server. Extensive
simulations show that our task offloading algorithm outperforms
both offload-only and local-only algorithms, ensuring satisfactory
service quality for 5G services.

Index Terms—5G mobile networks, task offloading, deep rein-
forcement learning, DQN, mobile edge computing

I. INTRODUCTION

With the advent of the Internet, wireless devices such as
smartphones, tablets, laptops, smartwatches and other smart
devices have become more common. These devices are con-
venient and used for communication, entertainment and work.
This trend will continue with new technologies that have
increased the demand for wireless connectivity, including fifth
generation (5G) technology standards and its beyond. As more
people use wireless technology, the need for efficient and
reliable wireless networks becomes critical.

Mobile edge computing (MEC) provides cloud computing
services at the network edge, reducing latency in 5G mobile
networks. With traditional cloud computing, data received by
a macro base station (BS) is sent to the cloud for processing,
which can result in long processing times depending on the
communication and processing environment to and from the
core network. However, MEC allows for local processing
through the MEC server near the BS, increasing throughput
and reducing delay time.

Many user equipments (UEs) struggle to obtain reliable
computation services, especially in remote or mountainous ar-
eas where communication infrastructures are sparse and MEC

This work was supported in part by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2022R1F1A1076069).

environments are uncertain. Fortunately, unmanned aerial ve-
hicles (UAVs) have been used to assist MEC systems in
executing computation-intensive tasks due to their flexible
deployment and large coverage [1]–[4]. By establishing LoS
links with ground UEs, UAVs can act as “flying gateways to
MEC servers” and offer significant offloading services with
low network overhead and execution latency. Although prior
research on UAV-assisted networks has focused mainly on
communication aspects [5], [6], there is still some work on
UAV-assisted MEC systems, such as trajectory design [5], [7],
resource management [8], [9], and computation offloading [9].
However, most existing research has only considered a single
UAV for computation offloading.

This paper proposes an opportunistic task offloading al-
gorithm in UAV-assisted MEC (OTO-MEC) based on deep
Q-network (DQN). First, we establish a Markov decision
process (MDP) model in which the UAV can choose whether
to perform local processing on the MEC server or offload
the task. We then simulate OTO-MEC with a reinforce-
ment environment tailored for UAV-assisted MEC and verify
the proposed technique through extensive simulation. Results
show that OTO-MEC processes 548% more computing units
than the offloading-only method and 44% more than the local
edge computing-only method.

II. SYSTEM DESCRIPTION

Fig. 1 illustrates an edge computing-enabled UAV coop-
erative MEC system. Multiple user equipments (UEs) are
associated with a UAV, a decision-making agent that manages
a specific area. Each UE has tasks to process, and each task
has specific compute unit and processing time requirements.

Fig. 2 shows an episode composed of media access phase
and task process phase. The task gathering occurs during the
medium access phase. The UE transmits its task with the
communication protocol according to medium access control
(MAC) of 5G standards. After the medium access phase, the
queued tasks are processed on a first-in-first-out (FIFO) policy
in task process phase. The UAV decides whether to 1) offload
the task to the cloud, or 2) process it on the local MEC server
per decision epoch.

881979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Fig. 1. System illustration for OTO-MEC. UE has a number of tasks that
consist of required computation units and required processing times.

Fig. 2. The timing diagram of OTO-MEC consisting of medium access phase
and task process phase.

III. MARKOV DECISION PROCESS FORMULATION

The MDP model is an appropriate mathematical decision-
making framework. In this section, we present an MDP model
for offloading decision.

A. State Space

We define the state space of a finite set S as follows:

S = F×C×T×Q, (1)

where F is the set of the available computing unit, C is the
set of the discretized channel conditions from UAV to the
portal of the core network, T is the set of the remain decision
epoch, and Q is the set of information of gathered tasks during
medium access phase.

Assuming the MEC server has the maximum fmax units, F
is defined as

F = {0, 1, · · · , fmax}. (2)

Regarding the channel model between UAV and core net-
work, we use a two-state Gilbert-Elliot model [10], [11] to
represent the wireless channel from the UAV to the core
network. The channel has a good state and a bad state, based
on the signal-to-noise ratio (SNR) being above or below a
threshold value. Using this model, channel conditions are
represented as C as follows:

C = {0, 1}, (3)

where c(∈ C) = 0 represents a good state and c = 1 be a
bad state. Additionally, we assume that the wireless channel
conditions between UAV and UE, UAV and MEC server are
always good.

Given there are tmax epochs per an episode, then T can be
defined as

T = {0, 1, · · · , tmax}. (4)

Next, assuming there are L rooms to be stored in the queue,
Q can be represented as

Q =

L∏
i=1

Qi, (5)

that is, Qi represents the task information array in the i-th
order. As defined in Fig. 1, tasks are gathered on queue in
UAV and the queue consists of required computation unit and
required processing time. Hence Qi is defined in the form of
a tuple with two elements as

Qi = (Qf
i ,Q

t
i), (6)

where the computational unit required for the task at the ith
order in the queue to be executed, Qf

i = {0, 1, · · · , fmax}
and the required time for the task at the same order, Qt

i =
{0, 1, · · · , tmax}, respectively.

B. Action

Based on the state information in Section III-A, the agent
chooses the action a configured to offload or process locally.
To do end, we define the action state as follows:

A = {0, 1}, (7)

where a(∈ A) = 0 and a = 1 stand for offload and process
locally, respectively. When an offload action is selected, the
task from the queue head is forwarded to the core network
by the UAV via a wireless channel. Since the channels can be
good or bad as defined in (3), it will fail to deliver the task to
the core network and send the task later if the channel is bad.
In the case when the agent decides to process the task locally,
the UAV will deliver the task to the local MEC server.

C. Reward Function

To define the reward function, we consider the weighted
processed computation amount since the primary mission is to
fully utilize computational capability for both cloud and MEC
servers. In particular, reward is defined as the computing unit
of the task when the processing time of the task has expired.
Additionally, since the core network is a place where tasks

882

Fig. 3. Neural network architecture with a learning agent, a replay memory, and neural networks.

from multiple UEs are concentrated, congestion and delay that
may occur are reflected through a weight. Then the reward is
defined as follows:

R = weight ∗ qfi , if qti = 0, (8)

where weight is 1 when the task is processed at the MEC
server and is wc(< 1) when the task is processed at the cloud
server.

IV. NEURAL NETWORK ARCHITECTURE

Deep reinforcement learning (DRL) can learn and make
optimal decisions in complex and uncertain network environ-
ments through trial and error, even with large state spaces.
As shown in (1), OTO-MEC has a large number of states. In
order to solve the MDP model, we propose using a deep rein-
forcement learning algorithm. Specifically, we suggest using
a DRL model based on the deep Q-network [12], which is
a model-free reinforcement learning algorithm that learns the
value of actions in specific states. By adopting this approach,
we can improve the efficiency of learning.

To tackle the task offloading decision problem, we utilized
a DQN architecture as depicted in Fig. 3 that consisted of
two neural networks: the target and prediction networks. The
target network is responsible for computing the target Q-
values, while the prediction network calculates the estimated
Q-values. By doing so, we were able to determine the optimal
course of action for task offloading with greater precision.

Furthermore, we utilize experience replay to train the
DQN. Specifically, by using experience replay technique in

TABLE I
SIMULATION PARAMETERS

Description Value
Hyperparameters

Number of input nodes 83
Number of neurons for the hidden layers 42

Number of the hidden layers 2
Optimizer AdamW [13]

Activation function ReLU
Learning rate 0.0001
Discount rate 0.99

Batch size of experience replay 128
Environment parameters

Maximum computation unit for MEC server 100
Epoch size per episode 20
Maximum buffer size 20
Reward weight, wc 0.1

the learning process. We store the learned experience et =
(st, at, rt, st+1) in a replay memory at each time epoch. Then,
we randomly choose a batch of stored experiences as samples
to train the DQN. This can deal with unstable training problem
that occurs due to autocorrelation by transforming the problem
into one that is similar to a supervised learning problem.

V. SIMULATION RESULTS

For performance analysis, we conduct extensive simulations
with Python 3.10 along with Gymnasium 0.29.0 [14] which
is a standard API for reinforcement learning and PyTorch
2.0.1 [15] which is an open source machine learning frame-
work. We inherit the given gymnasium environment and create

883

Fig. 4. Histograms of OTO-MEC and comparison algorithms. The test is
performed after 2000 training episodes. Each algorithm is tested for 200
different episodes. Vertical bars represent the average value of the amount
of processed units for each algorithm.

a custom environment to fit our scenario. Regarding the neural
network structure and the environments, we summarize the
hyperparameter and environment parameter in Table I.

Fig. 4 displays histograms of the number of processed units
for each algorithm. The model was trained for 2000 episodes.
OTO-MEC outperforms the other comparative algorithms,
including the local processing-only algorithm and the offload-
only algorithm. Specifically, in the first algorithm, the UAV
always processes the tasks on local MEC servers, while in
the second algorithm, the UAV always offloads the tasks to
the cloud server. It has been shown that OTO-MEC processes
more than 548% of the offload-only algorithm and more than
44% of the local processing-only algorithm.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed OTO-MEC, an opportunistic
task offloading algorithm for UAV-assisted MEC system in
which the UAV selects the action among offloading the task
to the cloud and processing it on the local MEC server.
To find out the optimal policy to maximize the amount
of processed tasks, we formulated an MDP that considers
available computing unit for MEC, current channel condition,
and the task information. Performance analysis demonstrated
that OTO-MEC outperforms other comparative algorithms. We
will use the custom environment and proposed algorithm as a
basis to expand the algorithm’s capabilities to cover scenarios
involving multiple UAVs and MEC servers. We will also take
the power consumption of the UAVs into account for the
future work. Additionally, we will investigate the application
of federated learning techniques to this expanded environment.

REFERENCES

[1] Y. Wang, Z. Su, J. Ni, N. Zhang, and X. Shen, “Blockchain-empowered
space-air-ground integrated networks: Opportunities, challenges, and
solutions,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1,
pp. 160–209, 2021.

[2] N. Zhao, Z. Ye, Y. Pei, Y. C. Liang, and D. Niyato, “Multi-Agent Deep
Reinforcement Learning for Task Offloading in UAV-Assisted Mobile
Edge Computing,” IEEE Transactions on Wireless Communications,
vol. 21, no. 9, pp. 6949–6960, 2022.

[3] J. Yao, S. Zhang, Y. Yao, F. Wang, J. Ma, J. Zhang, Y. Chu, L. Ji,
K. Jia, T. Shen, A. Wu, F. Zhang, Z. Tan, K. Kuang, C. Wu, F. Wu,
J. Zhou, and H. Yang, “Edge-Cloud Polarization and Collaboration: A
Comprehensive Survey for AI,” IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 7, pp. 1–1, 2022.

[4] Z. Ning, H. Hu, X. Wang, L. Guo, S. Guo, G. Wang, and X. Gao,
“Mobile Edge Computing and Machine Learning in The Internet of
Unmanned Aerial Vehicles: A Survey,” ACM Computing Surveys, 2023.

[5] N. Zhao, Z. Liu, and Y. Cheng, “Multi-Agent Deep Reinforcement
Learning for Trajectory Design and Power Allocation in Multi-UAV
Networks,” IEEE Access, vol. 8, pp. 139 670–139 679, 2020.

[6] G. Yang, R. Dai, and Y.-C. Liang, “Energy-efficient uav backscatter
communication with joint trajectory design and resource optimization,”
IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 926–
941, 2020.

[7] Q. Luo, T. H. Luan, W. Shi, and P. Fan, “Deep Reinforcement Learning
Based Computation Offloading and Trajectory Planning for Multi-
UAV Cooperative Target Search,” IEEE Journal on Selected Areas in
Communications, vol. 41, no. 2, pp. 504–520, 2023.

[8] W. Liu, B. Li, W. Xie, Y. Dai, and Z. Fei, “Energy Efficient Computation
Offloading in Aerial Edge Networks With Multi-Agent Cooperation,”
IEEE Transactions on Wireless Communications, vol. PP, p. 1, 2023.

[9] H. Guo, Y. Wang, J. Liu, and C. Liu, “Multi-UAV Cooperative Task
Offloading and Resource Allocation in 5G Advanced and Beyond,” IEEE
Transactions on Wireless Communications, vol. PP, p. 1, 2023.

[10] Q. Zhang and S. Kassam, “Finite-state markov model for
rayleigh fading channels,” IEEE Transactions on Communi-
cations, vol. 47, pp. 1688–1692, 1999. [Online]. Available:
http://ieeexplore.ieee.org/document/803503/

[11] H. Boujemaa, M. B. Said, and M. Siala, “Throughput Performance
of ARQ and HARQ I Schemes over a Two-states Markov Channel
Model,” 2005 12th IEEE International Conference on Electronics,
Circuits and Systems, pp. 1–4, 12 2005. [Online]. Available:
http://ieeexplore.ieee.org/document/4633423/

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[13] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019.

[14] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d.
Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

[15] “PyTorch.” [Online]. Available: https://pytorch.org

884

