979-8-3503-1327-7/23/$31.00 ©2023 IEEE

Adaptive client training scale orchestration for
federated learning

Younghwan Jeong !, Taewon Song ? and Taeyoon Kim 3%
L3 Department of computer engineering, Dankook University, Yongin-si, Gyeonggi-do, 16890, Korea
E-mail:{cjstntjd123,2000kty } @ dankook.ac.kr
2 Department of Internet of Things, Soonchunhyang University, Asan 31538, Korea
E-mail:twsong @sch.ac.kr

Abstract—Federated learning (FL), in contrast to traditional
centralized learning, has gained significant attention as it enables
the training of high-performance neural networks by maintaining
user data locally while exchanging model updates between the
server and clients, i.e., end-to-end network exchange. However,
in practical environment, when considering various anonymous
participants’ computational resources, only a minority of clients
can comply with the constraints imposed during the server-side
training process. To address this issue, we propose Adaptive
Scaling-Federated Learning (AS-Fed) based on Deep Q-Network
(DQN) to dynamically orchestrate client’s local data, allowing the
inclusion of a larger number of clients in the training procedure.
Our experimental results demonstrate that the proposed AS-
Fed approach outperforms the legacy scheme, achieving higher
normalization performance during the training process.

Index Terms—federated learning, adaptive scaling, normaliza-
tion performance, Deep Q-network

I. INTRODUCTION

HANKS to remarkable advancements in hardware and

improvements in communication environments, in recent
years, there has been a significant increase in the generation
and storage of large-scale data from various edge devices such
as smartphones, home appliances, and sensors. To effectively
train high-performance neural network models that capture the
unique characteristics of this massive device data, Federated
Learning (FL) has been proposed [1], [2]. FL enables train-
ing models locally on heterogeneous devices by exchanging
models between the server and clients, thus preventing the
leakage of sensitive user data and achieving advantages such
as reduced communication and storage costs.

Due to these benefits, there has been numerous research
in recent years to expand FL into practical applications.
McMahan et al. [3] proposed FedAVG, which improved the
training efficiency of FL by performing multiple local updates
on user devices. Li et al. [4] introduced FedProx, which
applied a proximal term to aggregate partial tasks from diverse
user devices. Chai et al. [5] mitigated training delays through
the classification of user devices with similar responsiveness
using Tier in FedAT. Xie et al. [6] proposed FedAsync to
efficiently aggregate user devices in a non-IID environment.
This approach normalizes staleness weights to control asyn-
chronous noise, adapting parameters to achieve non-convex
optimization. Furthermore, various research efforts have been
conducted to overcome the limitations of heterogeneity, a
major challenge in FL. [7]-[10]

885

However, despite these diverse efforts, existing approaches
are fundamentally designed to exclude user devices that do
not comply with the training constraints imposed by the
server. This not only hinders the global model’s normalization
performance to train on a wider range of data but also results
in wastage of user device resources.

To address these issues and maximize the participation of
user devices in the training process, this paper proposes AS-
Fed. AS-Fed analyzes the training constraints imposed by the
server and the available resources of user devices using Deep
Q-Network (DQN). In other words, the server coordinates
whether or not user devices connected to the network partici-
pate in training, and when participating, the size of data to be
trained. To evaluate the performance of AS-Fed, experiments
are conducted on benchmark datasets under various training
constraint environments. The results demonstrate that AS-Fed
achieves higher normalization performance compared to other
FL schemes aimed at improving training efficiency.

The remainder of this paper is as follows: Section 2 explains
the system model of AS-Fed, Section 3 performs problem
statement and implementation of AS-Fed, Section 4 presents
the experimental results, and finally, Section 5 concludes the

paper.

II. SYSTEM MODEL

— 850

2. Update local model

lelihsl
w0

4. Aggregation
& update global model

Fig. 1. Example of federated learning training sequence.

Figure 1 illustrates the training process of Federated Learn-
ing (FL). FL is divided into four sub-procedures, totally
referred to as global iterations. Through the repetition of these

ICTC 2023

global iterations, the central server updates the global model.
We assume an environment where diverse anonymous user de-
vices (clients) are connected to the server. In the first procedure
of the ¢-th global iteration, the central server randomly selects
clients S; to participate in training and broadcasts copies of
the global model W; to each client. In the second procedure,
each participating client assigns the received copy of the
global model as its local model. Then, each client performs
local updates, following the training procedure defined by the
central server, for a specified number of iterations using the
local data they possess.

Wi =wi, —nVE(w),, Di),k=1,2,--- K (1)

where, K is the number of local updates determined by the
server, and wt i 1s a i-th participating client’s local model that
performs the k-th local update in the ¢-th global iteration. 7
is the learning rate and D, is the local data of ¢-th client.

In the third procedure, participating clients transmit their
updated local models to the central server before a prede-
termined time limit expires. If a client fails to complete the
second procedure within the time limit, it is automatically
discarded and not aggregated. In the fourth procedure, the
central server aggregates the updated models received from
participating clients. Then, the global model is updated by
performing a weighted sum proportional to the size of local
data for each participating client as

[St

Wit fz |D|

and where W/ is the updated local model of the i-th participat-
ing client. S is the set of participating clients in the ¢-th global
iteration, and D, is the sum of local data of all participating
clients. Through the repetition of these procedures, the global
model gradually converges to an optimal point.

However, in the FL training process where anonymous
clients participate, only a minority of clients satisfy the two
requirements imposed by the server: (1) performing a fixed
number of local updates and (2) uploading the updated model
to the central server within a specified time limit. This is
because each participating client has different computational
resources, communication conditions, and local data sizes. The
existence of such heterogeneous clients can reduce the overall
data size that the server can train on and can be a cause of
performance degradation in the global model. Therefore, it
is necessary to find an moderate approach that considers the
diverse resource environments of heterogeneous clients while
satisfying the constraints of the central server.

Pi_q1 o

III. ADAPTIVE SCALE-FEDERATED LEARNING (AS-FED)

In this section, we propose AS-Fed (Adaptive Scale-
Federated Learning) to maximize the participation of training
participants. First, we present 1) the problem statement of AS-
Fed and 2) describe its implementation.

A. Problem statement of AS-Fed

To enable heterogeneous training participants with limited
resources on their respective devices to perform model training
effectively, it is necessary to adaptively adjust the size of the
training data used. Therefore, AS-Fed employs adaptive data
scaling based on Deep Q-Network (DQN) to allow diverse
participants to participate in the training procedure, despite
the training constraints imposed by the server.

There are three main factors that influence the training time
of multiple clients participating in the global model training
of AS-Fed: 1) Training data size, 2) Computation time, and
3) Transmission time.

1) Training data size: Within each global iteration, the
clients ¢; belonging to the client set .S; selected by the server
at the beginning of the ¢-th global iteration participate in the
training using their respective local data. During the limited
training time for each participant, the size of the data they will
train on can be determined as follows:

D,, =K x |d,|,c; € S 3)

where, K is the total number of training epochs limited by the
server, and |d.,| is the size of local data held by participating
client ¢;.

2) Computation time: Participating clients ¢; € S; partic-
ipate in training with different computing resources. Accord-
ingly, F¢, is defined as the CPU frequency of the participating
client. If the client consumes f,, to process one sample local
data, the client ¢; computation time Tf o™ is expressed as:

Dc¢ X fcq‘

=R ' “4)

3) Transmission time: The server-side training deadline
includes the time for participating client ¢; € S; to perform
local updates and then upload the updated model W} to the
server. Therefore, if the uplink frequency of the participating
client is A.,, the transmission time TCT rans of the client ¢; is
expressed as follow

Com
T,

Wi
A,

where, |W}| is the parameter size of the local model updated
by client c;.

The total training time TCTi rain taken by the participating
client ¢; for local update based on the above three factors is
expressed as

Trans __
TIrens —

&)

Trrain _ Tgom + chl;rans < Tdeadline (6)
When assuming that the availability of resources remains
constant for participating clients throughout the training pro-
cess, the factor that has the greatest impact on the overall
training time 7,.7*" is the size of the training data |d.,|.
Therefore, if the server can pre-determine the training data
size of participating clients, even in a fixed training constraint
environment, more clients can complete the training procedure
while meeting the deadlines. In AS-Fed, the server also
distributes a copy of the global model W, along with the

886

scale coefficients determined via the DQN model. This allows
clients to adjust the size of the local data used for training in
heterogeneous resource environments.

B. Implementation of AS-Fed

3. Scaling local data size

B |G e |

4. Training local model

—o—
—o
o—

Global model
—
p—
2. Broadcast global
& scale coefficient

0
ﬁ?ﬁ DQN-model E

1. Generate scale coefficient
via client information

=
I | e |

Updated model

2] (2] 02F

5. Upload updated local model

Fig. 2. Illustration of AS-Fed architecture.

Figure 2 illustrates the architecture of AS-Fed. In the
conventional FL training procedure, N participating clients
were randomly selected. However, in AS-Fed, the server
prioritizes the selection of N clients from the network-
connected clients using the DQN model. Simultaneously, the
DQN model outputs scaling coefficients within the [0,1] range.
Subsequently, the server sends these scaling coefficients along
with a copy of the global model to the selected NV clients. The
clients utilize the received scaling coefficients to perform the
training procedure using locally scaled data that matches the
distribution of their current local data.

To train agent via DQN model, the server conducts offline
training of the agent. The states, actions, and reward functions
for training the agent to obtain the optimal scaling coefficient
are defined as follows

States : The agent observes the information regarding the
available resources of the current connected user device and
generates the state s., based on it. The available resource
information of the participating client ¢; is defined as s, =<
|de,|, Fe,, Ac, s pie; [t] >. where, p, [t] is the aging term, which
means the number of global iterations in which the client c;
is not selected by the server, and is expressed as

pilt + 1] = (pi[t] + 1) x (L —d;¢),4:0 € {0,1} (D)

where, 7;, is an indicator variable indicating whether or not
the server has selected.

Actions : To scale the size of the local data for the
participating clients during training, scaling coefficients in the
range of a., = [0,1] are defined. To prevent DQN model
saturation caused by an excessive action space, the scaling
coefficients are divided into increments of 0.1, ranging from
0to 1.

Reward functions : The reward function is designed to
optimize the selection of participating clients. The server-side
DQN agent should coordinate as many participating clients as
possible to participate in the training process, while each client

trains on a larger number of local data. The reward function
for this is expressed as

pdeadline _pTrans
2

e Tzom
mln(a7 nave X T’?ra.in_Tsicadlinc)7 Tdeadline —TTrans —

i i TCOT’TI, Ci
ch‘, - —1 [E——
) Tden,dlzn,e_Tgran,.s 9

i

1, ac, = 0.
()

where « is the maximum reward limit to avoid diverging
the DQN model. V¢ is the average of ., of all clients
connected to the network. Meanwhile, through a., of the
DQN model, the server can decide whether or not the client
participates in training. If a., is O, the client is excluded
from training. Accordingly, the DQN model performs an
optimal choice between client exclusion and participation by
some scaled local data. This allows the server to approximate
Q:858x AR the parametric function to non-linear state-
action pairs. Accordingly, the DQN training at each time step
t is formulated as follow

>

<s,a,r,s'>€Dy

L(oy") = PN = Qs 67"

DQN .
where v, QN s expressed as

DQN A
yPON —)+ ymaz Q(s', a; 0179 (10)
a’€A
where 017%™ is a set of weights that are updated at time
step, and 0,79 is a delayed weight that is copied at regular
intervals to stabilize the training. Through this, the server can

perform progressively optimized participating client selection.

IV. PERFORMANCE EVALUATION
A. Simulation setup

To evaluate the performance of AS-Fed, we assume the fol-
lowing experimental setup. The benchmark dataset used in the
experiments is CIFAR-10, consisting of 10 classes with 5,000
training data and 1,000 test data per class. There are a total of
1,000 clients connected to the network. Each client possesses
200 local data, and the local data for each client follows
an independent and identically distributed (IID) distribution
with 20 uniformly sized samples per class. The sample data
processing speed —+—, based on the CPU frequency of each
client, takes random values between 1 and 30. The parameter
Tg; Tems for participating client ¢; is randomly chosen between
1 and 10. In each global iteration, 20 clients are selected to
participate in the training procedure. Additionally, each client
performs K = 5 local updates in one global iteration. The
training deadline 7' is set as the average of the mean training
time for all clients, normalized to 1.

B. Impact of AS-Fed

In this section, we evaluate the training performance of
AS-Fed based on the training deadline. Figure 3a presents
a performance comparison when the deadline 7' is set to 1.
AS-Fed demonstrates higher accuracy and faster convergence

887

a) Performance comparison under T=1

b) Performance comparison under T=0.5

c) Comparison of number of average participating clients

80

70 A

60

accuracy

accuracy
& 8

8

—&— As-Fed T=1
—o— FedAVG T=1

N
o
s

20.0 1

mmm AS-Fed
N FedAVG
W FedProx

]
b
o

,_.
~
w»

~N
v

Number of participating clients
=
v o
o o

~
4]

—4— AS-Fed T=0.5
—8— FedAVG T=0.5

10 1 = FedProx T=1 104 —*— FedProx T=0.5 00~ .y T-05
; y ; : ; : ; - - - - - ‘ : dli
0 000 150 200250 300 0 50 100 150 200 250 300 Deadine
global iteration K
global iteration
Fig. 3. Test set accuracy vs. global iteration for Cifar-10 under 7" = [1, 0.5] setting
compared to other existing FL schemes such as FedAVG ACKNOWLEDGMENT

and FedProx. Specifically, AS-Fed achieves accuracy im-
provements of [2.47%, 2.33%] over FedAVG and FedProx,
respectively. This can be attributed to AS-Fed’s aggregation
of more clients in the training procedure through training data
scaling in each global iteration and the utilization of fresher
training data through the aging term f., [t].

Figure 3b shows the performance comparison when the
deadline T is reduced to 0.5. As observed from the figure,
both FedAVG and FedProx experience accuracy degradation
compared to the 7" = 1 scenario. Specifically, FedAVG and
FedProx suffer accuracy reductions of [7.68%, 3.78%], respec-
tively. This can be attributed to a larger number of clients
failing to process the server’s training constraint and being
dropped. Consequently, the global model is trained with fewer
data, leading to a decrease in normalization performance. On
the other hand, as depicted in Figure 3b, 3c, AS-Fed adapts
its local data size through training data scaling, resulting in
minimal changes in the number of dropped clients even with
the reduction in 7'. Therefore, AS-Fed effectively trains with
a larger number of unique local data, leading to a smaller
accuracy drop of 1.79% compared to other FL schemes. These
experimental results demonstrate that AS-Fed successfully
performs training in the heterogeneous resource environment
of FL through adaptive training data scaling.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose AS-Fed, a method for adaptively
scaling training data in the heterogeneous resource environ-
ment of FL. AS-Fed leverages a server-side DQN model to
select participating clients and adjust the training data size
using scaling coefficients. This enables a diverse set of clients
to overcome server-side training constraints and participate
in the training procedure, providing the global model with
opportunities to train on more unique local data. Experimental
results demonstrate that AS-Fed achieves higher test accuracy
compared to legacy FL schemes, showcasing its effective-
ness in maintaining normalization performance. For future
work, we will explore client-driven resource allocation in
dynamically changing resource environments of FL, aiming to
effectively train models even in scenarios where user devices
exhibit dynamic resource availability.

This work was supported in part by the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (No.2022R1F1A1076069).

REFERENCES

K. Jakub, B. McMahan, R. Daniel, "Federated optimization: Dis-
tributed machine learning for on-device intelligence”. arXiv 2016,
arXiv:1610.02527.

K. Peter, B. McMahan, A. Brendan, ”Advances and open problems in
federated learning,” Found. Trends Mach. Learn. vol. 14, pp. 1-210,
2021

B. McMahan, M. Eider, R. Daniel, H. Seth, A.A. Blaise,
”Communication-efficient learning of deep networks from decentral-
ized data,” In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS) Fort Lauderdale, FL,
USA, 9-11 May 2017.

T. Li, A.K. Sahu, M. Sanjabi, M. Zaheer, A. Talwalker, V. Smith,
“Federated optimization in heterogeneous networks,” Proc. Mach.
Learn. Syst., vol. 2, pp. 429-450, 2020

Z. Chai, Y. Chen, L. Zhao, Y. Cheng, H. Rangwala, “Fedat: A
communication-efficient federated learning method with asynchronous
tiers under non-iid data.” arXiv 2020, arXiv:2010.05958.

C. Xie, S. Koyejo, I. Gupta, Asynchronous federated optimization.”
arXiv 2019, arXiv:1903.03934.

M. Mohri, G. Sivek, A.T. Suresh, "Agnostic Federated Learning,” In
Proceedings of the 36th International Conference on Machine Learning
Long Beach, CA, USA, 9-15 June 2019.

F. Zhou, G. Cong, ”On the convergence properties of a k-step averaging
stochastic gradient descent algorithm for nonconvex optimization,” In
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI ,Sweden, 13—19 July 2018.

Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou,
H. Ludwig, F. Yan, Y. Cheng, "TiFL: A tier-based federated learning
system,” In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing,Stockholm, Sweden,
23-26 June 2020, pp. 125-136

F. Zhou, G. Cong, ”On the convergence properties of a k-step averaging
stochastic gradient descent algorithm for nonconvex optimization.” In
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, 13-19 July 2018.

(1

[2]

[3]

[4]

[5

—_

[6

[}

(71

[8

—_

(91

[10]

888

