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Abstract—The split computation service has gained wide atten-
tion to reduce the artificial intelligence-based service completion
time. In a split computation service, the mobile device and edge
server need to exchange the intermediate data to cooperatively
process the AI-based service (i.e., process the deep model in AI-
based service). In this case, the performance of split computation
(e.g., classification accuracy) is degraded due to the transmis-
sion error. However, most of the works did not consider the
transmission error effect of the split computation service. In this
paper, we conduct various simulations to analyze the effect of
transmission error on the split computation service. From the
simulation results, we find some general trends that the later deep
layer and convolution layer have better error-tolerant capability.

I. INTRODUCTION

With the remarkable growth of artificial intelligence (AI),
traditional service applications in various fields are replaced
by AI-application that are generally implemented by the
deep neural network (DNN) [1]. Also, DNN in applications
becomes deeper and deeper to improve the service quality and
thus the AI application needs more computation power to the
computation node (e.g., edge server, mobile device, and cloud
server) [1]. Due to this trend, a higher computation burden is
taken into the mobile devices having low computation power,
and thus the service computation time (i.e., inference time)
is prolonged. Especially, this problem is harmful to real-time
service (e.g., AR navigation service).

To mitigate this problem, the split computation service
has gained wide attention, In the split computation service,
the deep model is split into two sub-deep models (i.e., a
former deep model and later deep model), a former deep
model and a later deep model are provisioned to the mobile
device and the edge server, respectively [1]. Then, the mobile
device processes the former deep model by feeding the input
data and transmits the output data of the former model (i.e.,
intermediate data) to the edge server via a wireless network.
After that, the edge server processes the later deep model with
the received intermediate data and returns back the processing
results to the mobile device. Since the mobile device processes
the part of the deep model (i.e., the former deep model), the
computation burden at the mobile device can be significantly
reduced. Also, since the later deep model is processed by the

edge server having higher computation power, the inference
time of the deep model can be significantly reduced. Owing to
these advantages, the split computation service is considered as
one of the represented services of the next-generation network
(e.g., private 5G/6G mobile network) [2], [3].

To optimize the performance of split computation service,
lots of research have been conducted [1], [4], [5] and most of
the works focused on the split layer determination to minimize
the service completion time [1], [4]. Kang et al. proposed
Neurosugeon to select the best-split point optimizing for the
service completion time or the energy consumption of mobile
devices. On the other hand, Chen et al. proposed dynamic split
points selection scheme to minimize the service completion
time. This scheme splits the deep model into two or three
sub-models based on the determined split points. However,
these works did not consider the transmission error. Since
the intermediate data is transmitted from the mobile device
to the edge server via a wireless network, a transmission
error occurs, and thus the edge server cannot always re-
ceive the original intermediate data from the mobile device.
Due to this transmission error, the performance of the split
computation service (e.g., accuracy) is worsened. To handle
this problem, Wang and Zhang proposed NeuroMessenger to
reduce communication overhead while guaranteeing the target
service quality (i.e., service accuracy). In NeuroMessemnger,
pruning deep layers and coding of the intermediate data, and
determination on the number of retransmission are proposed to
make the error tolerance split computation service. However,
these works did not determine the optimal split point to reduce
the service completion time while guaranteeing the target
service quality when the transmission error occurs. To this
end, the relationship between the transmission error and split
points should be first researched.

In this paper, we conduct various simulations to analyze the
relationship between the transmission error and split points
(i.e., the effect of transmission error on the split computation
service). The simulation results provide insight into the error-
tolerance split point selection scheme and we describe this
scheme as future works.
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Fig. 1. Simulation environment

II. EFFECT OF TRANSMISSION ERROR TO THE SPLIT
COMPUTATION SERVICE

In this Section, we describe the simulation environment and
results to analyze the effect of transmission error on the split
computation service.

A. Simulation Environment

For performance evaluation, we conduct various simulations
with different split points and different transmission error
rates. Figure 1 represents our simulation environment. In this
environment, first, we prepare the VGG-based deep model
with a different number of layers [6]. The detailed deep model
information is described in Table I. The deep model consists
of layer blocks including convolution layers and one pooling
layer and 3 dense layers. The layer blocks and 3 dense layers
are sequentially connected. For instance, the VGG9 models
consist of 5 layer blocks and 3 dense layers. In the layer
block, convolution layers with the same number of channels
and one pooling layer are sequentially connected. In the last
layer block, 2 convolution layers with 512 channels and one
pooling layer are sequentially connected. The deep models
are trained by Cifar-10 and Cifar-100 datasets. Cifar-10 and
Cifar-100 datasets provide 60000 data for 10 and 100 classes,
respectively. With the trained deep models, we make the
split models (i.e., a former deep model and a later deep
model) based on all layers. Then, we assume two transmission
error models (i.e., a random error and a burst error) [5]. In
the random error model, the values in the intermediate data
(i.e., feature map) are randomly set to 0 according to the
transmission error. On the other hand, the near values in the
intermediate data (i.e., feature map) are set to 0 an in the
burst error model. During the simulation, we use 10000 data
in Cifar-10 or Cifar-100 dataset [7] and obtain the average
classification accuracy.

B. Simulation Results

1) Effect of Deep Model Architecture: Figures 2 show the
effect of the deep model architecture. Especially, Figures 2 (a)
and (b) represent the inference accuracy of VGG6 and VGG19
models according to the split layers and error rates. In this
simulation, deep models are trained by the Cifar-10 dataset
and a random error model is applied. From this result, when
the error rate increases, the inference accuracy is degraded
because the edge server processes the later deep model by the

TABLE I
DEEP MODEL INFORMATION. (A): THE NUMBER OF LAYERS. (B) THE
NUMBER OF CONVOLUTION LAYERS IN EACH LAYER BLOCK. (C) THE
NUMBER OF FILTERS OF THE CONVOLUTION LAYER IN EACH LAYER

BLOCK. (D) THE NUMBER OF POOLING LAYERS IN EACH LAYER BLOCK.
(E) THE NUMBER OF DENSE LAYERS.

Model (A) (B) (C) (D) (E)
V GG6 10 [1,1,1] [64,256,512] [1,1,1] 3
V GG9 16 [1,1,1,1,2] [64,128,256,512,512] [1,1,1,1,1] 3
V GG11 18 [1,1,2,2,2] [64,128,256,512,512] [1,1,1,1,1] 3
V GG13 20 [2,2,2,2,2] [64,128,256,512,512] [1,1,1,1,1] 3
V GG16 23 [2,2,3,3,3] [64,128,256,512,512] [1,1,1,1,1] 3
V GG19 26 [2,2,4,4,4] [64,128,256,512,512] [1,1,1,1,1] 3
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Fig. 2. Effect of Deep Model Architecture. (a) VGG6 model with Cifar-10.
(b) VGG19 model with Cifar-10.

intermediate data with more error information. Meanwhile, we
can find the trend that the accuracy is less degraded when the
split point is determined as the later deep layer. This is because
the important feature from the input image for classification
is extracted from the former layers and the later layers only
conduct the classification operation with the extracted feature.

2) Effect of Dataset Type: Figures 3 (a) and (b) represent
the inference accuracy of the VGG16 model trained by Cifar-
10 and Cifar-100 datasets, respectively, when a burst error
model is applied. The number of classes in the Cifar-100
dataset (i.e., 100 classes) is larger than that of the Cifar-10
dataset(i.e., 10 classes), i.e., classification of the Cifar-100
dataset is a more complex task than the Cifar-10 dataset.
Figure 3 shows that the VGG16 model for the Cifar-10 dataset
has more error-tolerance layer than the VGG16 model for
the Cifar-100 dataset. This is because the VGG16 model
is not sufficiently deep for the complex classification task
(i.e., classifying the Cifar-100 dataset) but enough deep for
the simple classification task (i.e., classifying the Cifar-100
dataset).

3) Effect of error model: Figures 4 show the effect of
the transmission error model. Figures 4 (a) and (b) represent
the inference accuracy of the VGG11 models trained by the
Cifar-10 dataset when a burst error model and a random
error model are applied, respectively. Generally, the burst error
model affects a more negative effect to the split computation
than the random error. In the burst error, the blank hole in
the intermediate data occurs and thus the deep layers hardly
reconstruct this blank hole with other information. On the
other hand, in the error model, the error is sparsely applied to
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Fig. 3. Effect of the dataset. (a) VGG16 model with Cifar-10. (b) VGG16
model with Cifar-100.
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Fig. 4. Effect of the error model. (a) VGG11 model with Cifar-10 at burst
error model. (b) VGG11 model with Cifar-10 at random error model.

the intermediate data and this information with error can be
constructed by the deep layers with near information.

4) Effect of split layer: Figure 5 shows the effect of the
split layer. In Figures 5, Figure 5 (a) represents the inference
accuracy of all split layers in the VGG9 model. On the
other hand, Figures 5 (a), (b), and (c) show the inference
accuracy when the convolution layers, the pooling layers,
and the dense layers are selected as the split layer. In this
simulation, the Cifar-10 dataset is used for training the VGG9
model. Also, a burst error model is applied for this simulation.
From Figure 5 (a), when the convolution layer is determined
as a split point, i.e., the intermediate data after the convolution
layer is transmitted to the edge server, the split computation
service has a better error-tolerance feature than when the
pooling layer is a split point. This is because the pooling layer
makes the intermediate data with only important information
in the results of the previous layer (i.e., the intermediate data
of the convolution layer). Thus, although the pooling layer
provides a small size of intermediate data, this intermediate
data is more critical to transmission error.

III. CONCLUSION

In this paper, we conducted various simulations to analyze
the transmission error effect on the split computation service.
From the simulation results, some general characteristics have
been found. First, when the later deep layer is selected to
the split point, the split computation service has more error-
tolerant capability. Also, when the convolution layer is selected
to the split point, better error tolerance can be achieved.
However, when the split point is selected to a later split
point or convolution layer, the higher computation burden and
transmission burden to the mobile device are inevitable and
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Fig. 5. Effect of the error model. (a) All layers in the VGG9 model with
Cifar-10 at burst error model. (b) convolution layers in the VGG9 model. (c)
pooling layers in the VGG9 model. (d) dense layers in the VGG9 model.

thus it prolongs the service completion time. Therefore, in
future work, we will propose the performance-guaranteed split
point (PGPS) selection scheme that can guarantee the target
accuracy and service completion time while minimizing the
computation burden of mobile devices.
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