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Abstract—In this paper, we consider a structured design for
efficient PRACH preamble detection in conjunction with devised
Machine Learning (ML) methodology. Specifically, the main
contribution of this paper is to provide the receiver structure such
that all the learned weights and biases in the ML are maintained
irrespective of timing offset which varies in the actual PRACH
preamble detection situation. Furthermore, by considering an
enhanced input signal called Complex power Delay Profile
(CDP) rather than Power Delay Profile (PDP), the proposed
PRACH preamble detection scheme is shown to have not only
efficient structure but also enhanced detector performance in
the sense of detection and false alarm probabilities. For that,
we show the effectiveness of the proposed detector structure by
leveraging mathematical signal interpretation. Consequently, we
show that there exists SNR gain where the proposed PRACH
preamble detector satisfies the corresponding 3GPP performance
requirement in comparison with the existing typical one, which
validates the proposed structured design from the perspective of
detector performance.

Index Terms—Complex power delay profile (CDP), machine
learning (ML), physical random access channel (PRACH),
preamble detection, power DP (PDP)

I. INTRODUCTION

In the 5-th Generation (5G) New-Radio (NR) wireless
mobile communication system, one of the crucial procedures
is a random access (RA) procedure for uplink synchronization,
determining the identifier (ID) of the user equipment (UE) and
the time advance (TA) between the UE and the base station
(BS). The two types of RA exist, i.e., Contention Based RA
(CBRA) and Contention Free RA (CFRA) [1]. Unlike the
CFRA, in which the transmitted preamble is determined, the
UE randomly chooses one of up to 64 PRACH preambles and
transmits it to the physical random access channel (PRACH)
in CBRA. If each UE selects a different preamble, the BS can
identify each UE by detecting the corresponding ID and TA
in the physical layer perspective [2].

For that, the PRACH preamble is generated using a Zadoff-
Chu (ZC) sequence with ideal correlation properties, which
is widely used for synchronization signal detection [3],
[4]. Specifically, the conventional threshold-based detection
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scheme typically makes use of the Power Delay Profile (PDP)
obtained by correlating the received PRACH preamble with
the locally generated ZC sequence. Based on the preamble
related shared information between the BS and the UE by
higher layer signaling, the Search Window (SW) in the PDP
can be specified, and if the maximum value within the SW, i.e.,
the peak exceeds the predetermined threshold, the preamble ID
and TA as timing information corresponding to the specific SW
are identified. The conventional threshold-based scheme works
normally for PRACH preamble detection in high Signal to
Noise Ratio (SNR) regime. This is mainly due to the desirable
correlation properties of ZC sequence. However, in low SNR
regime, depending mainly on the feasible correlated power
through PDP has inherent limitations for PRACH preamble
detection, which results in non-negligible false alarm and miss
detection.

To overcome such a problem, several research has been
conducted using machine learning (ML) and the preliminaries
are [5]– [8]: In [5], [6], classical ML, such as K-Nearest
Neighbor (K-NN), naive Bayes (NB), decision tree classifier
(DTC), and ensemble learning, based preamble detection al-
gorithm is proposed. The mean and variance of the SW were
used as input for each ML model. Although the detection
performance is better than that of the conventional algorithm,
the inputs, mean and variance of the SW, are difficult to
consider as fully using the information of the SW. In [7], a
Convolutional Neural Network (CNN)–based algorithm using
a time-domain waveform as input data, instead of correlation
results, was proposed. By removing the correlation step and
keeping the number of CNN parameters smaller than those
used for image classification, accurate detection with SNR
gain can be achieved using a Deep Learning (DL) model
with computational complexity similar to conventional algo-
rithms. However, because the correlation properties of the ZC
sequence were not used, it was difficult to ensure that sufficient
information was included in the input layer. Furthermore,
the shape of the waveform changes depending on the root
sequence number of the PRACH preamble; therefore, the
number of parameters in the CNN model must be increased to
ensure consistent performance for all waveform shapes. Jang
et al. [8] presented a non-orthogonal DL–based end-to-end RA
framework that detects all PRACH preambles Even different
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UEs transmit the same PRACH preamble for massive Internet
of Things (mIoT). In this algorithm, SW is classified into
multiple classes, the number of preambles in one SW, through
the CNN and classification is performed, and the combination
of TAs of the corresponding class is estimated through the
Fully connected Neural Network (FNN). This algorithm shows
that the ML–aided detection algorithm can overcome the
limitations of the conventional binary classification algorithm.

In this paper, we propose a structural design for efficient
PRACH preamble detection that effectively combines the con-
ventional algorithm with the ML-based algorithm. Specifically,
before the preamble detection, the TA estimation step based
on the conventional algorithm is performed. Because the TA
estimation is simple and noise-robust. After that, the data pre-
processing step, which makes all types of SW have a similar
shape based on the estimated TA, is performed. Because of
this pre-processing step, even if we use an FNN model with
a small number of parameters, we can guarantee a more
noise-robust detection performance regardless of the TA of the
PRACH preambles. In addition, we propose a new data form
called the Complex power Delay Profile (CDP), a complex
number resulting from correlation. Compared with the PDP,
which only has power information, the CDP contains phase
information in addition to the information included in the PDP.
Using the CDP as the input for the FNN model guarantees a
more powerful detection performance than using the PDP as
the input.

The rest of the article is organized as follows. Section
II introduces the PRACH preamble structure, transmission-
reception process, and conventional algorithm with the presen-
tation of its problems. Section III mathematically shows the
overall procedure of the proposed algorithm, the TA estimation
step, the pre-processing step, and CDP. Section IV proves the
validity of the proposed algorithm by numerically comparing
the performance of the proposed algorithm with that of the
conventional algorithm. Finally, Section V concludes the pa-
per.

II. SYSTEM MODEL

Here, we focus on Contention-Based RA (CBRA), assuming
that 64 preambles are possible, and only consider the Additive
White Gaussian Noise (AWGN) channel environment. Specif-
ically, the UE generates the PRACH preamble as

xu,v[n] = xu((n+ Cv) mod LRA), (1)

where

xu[i] = exp

(
−j

πui(i+ 1)

LRA

)
, i = 0, 1, ..., LRA − 1 (2)

with Cv = vNCS , and xu,v[n] represents the cyclic shift
result of xu[i] and the time domain sequence of the PRACH
preamble. LRA denotes the PRACH preamble length, which
is 139 or 839 depending on the preamble format, NCS is the
amount of cyclic shift and determines the length of SW in
PDP; u is the logical sequence number mapped into the root
sequence index and v is one of 0, · · · , LRA

NCS
−1. The range of

the root sequence index is determined from the higher layer
parameter shared with UE and BS. The number of possible
PRACH preamble corresponding to one u is LRA

NCS
, same as

Cv , and if it is less than 64, then u should be increased till
the number of possible PRACH preamble is 64.

A specific UE randomly chooses one of the 64 PRACH
preambles. Subsequently, LRA–point FFT proceeds as follows:

Xu,v[k] =

LRA−1∑
n=0

xu,v[n]exp

(
−j2πnk

LRA

)
,

k = 0, ..., LRA − 1,

(3)

where Xu,v[k] is LRA–point FFT result of xu,v[n].
From NFFT –point IFFT, zu,v[n], the time domain sequence

after subcarrier mapping and Orthogonal Frequency Division
Multiplexing (OFDM) modulation, is generated as

zu,v[n] =

NFFT−1∑
n=0

Zu,v[k]exp

(
j2πnk

NFFT

)
,

n = 0, ..., NFFT − 1,

(4)

where,

Zu,v[k] =

{
Xu,v[k], if nsc

start ≤ k < nsc
start + LRA.

0, else.
(5)

Here, nsc
start is the start location of the PRACH subcarrier

in the frequency domain determined from the high-layer
parameter. Finally, zu,v[n] is transmitted to PRACH after Nrep

repetitions and adding NCP length cyclic prefix (CP) [3].
The BS computes the mean of the repeated part of the time-

advanced signal received at the jth antenna.

rju,v[n] = zu,v[n− τ ] + ω[n], n = 0, ..., NFFT − 1, (6)

where rju,v[n] represents the mean of the repeated part of CP
removed signal received at jth antenna (j = 1, 2, ..., NRX).
ω[n] is the noise owing to the AWGN channel. from OFDM
demodulation, Rj

u,v[k] is obtained as

Rj
u,v[k] =

NFFT−1∑
n=0

rju,v[n]exp

(
−j2πnk

NFFT

)
,

k = 0, ..., NFFT − 1

(7)

with (4), (6), we can write (7) as

Rj
u,v[k] = Zu,v[k]exp

(
−j2πτk

NFFT

)
+Ω[k],

k = 0, ..., NFFT − 1,

(8)

where Ω[k] is the noise in the frequency domain. By removing
zeros, Y j

u,v[k] can be obtained as

Y j
u,v[k] =

{
Rj

u,v[k]|nsc
start ≤ k < nsc

start + LRA

}
. (9)

With the locally generated ZC sequence using (2), the BS
computes the correlation power of Y j

u,v[k],

PDP j
u [n] =

1

NFFT

∣∣aju[n]
∣∣2 , (10)
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where

aju[n] =

NFFT−1∑
k=0

Aj
u[k]exp

(
j2πnk

NFFT

)
,

n = 0, ..., NFFT − 1,

(11)

and

Aj
u[k] =

{
Y j
u,v[k]X

∗
u[k], if 0 ≤ k < LRA − 1.

0, else.
(12)

where Xu[k] is LRA-point FFT result of the locally gen-
erated ZC sequence with the logical number u. PDP j

u [n]
is the correlation power of the received signal Y j

u,v[k] with
Xu[k]. After the correlation step, PDPu[n], the mean of all
PDP j

u [n](j ∈ 1, ..., NRX), is computed as

PDPu[n] =
1

NRX

NRX∑
j=1

PDP j
u [n]. (13)

The SW with a real peak in the PDP depends on the u, v of
the transmitted preamble. Because the BS does not know the
exact u,v of the transmitted PRACH preamble, the BS must
apply the detection algorithm to all 64 preamble candidates.
The SW in PDPu[n] corresponding to u and v, DPDP

u,v [n], is
defined as follows:

DPDP
u,v [n] = {PDPu[n]|vNSW + 1 ≤ n ≤ (v + 1)NSW } (14)

and

NSW =
NCSNFFT

LRA
, (15)

where NSW denotes the length of the SW. The conventional
threshold-based algorithm compares the peak of DPDP

u,v [n]
with a specific threshold γth. If the peak of DPDP

u,v [n] does
not exceed the γth, then that peak is determined as a false
peak. If it exceeds, the PRACH preamble for DPDP

u,v [n] is
treated as detected, and the identifier, ID, and estimated TA,
τ̂ , for the corresponding SW are {u, v} and the peak location,
respectively.

τ̂ = argmaxn
(
DPDP

u,v [n]
)
. (16)

In a low SNR regime, as the noise power increases, the
conventional algorithm has a critical problem, that is, the
increase in false alarm probability, Pf , as the false peak
exceeds the γth, and the decrease in the detection probability,
Pd, as the true peak does not exceed the γth. These problems
cause serious performance degradation in 5G communication
systems.

III. PROPOSED SCHEME

In this Section, we propose an efficient ML-based PRACH
detection algorithm that can improve the performance in terms
of Pd and Pf compared with the conventional threshold-
based detection algorithm. We can consider the result of
(11) as an input to the machine-learning model to derive an
improved machine-learning-based detection algorithm. This is
because the PDP, the result of (10), contains only correlation

power information. However, the result of (11) contains not
only power information but also phase information, making it
superior in terms of the amount of information it contains. By
using (11), we propose a new form of input data, the complex
delay profile(CDP), as follows:

CDP j
u [n] =

√
1

NFFT
aju[n], (17)

where CDP j
u [n] denotes the normalized complex number

result of the correlation between the locally generated ZC
sequence using u and the signal received from the jth antenna.
Depending on the TA, the peak location of SW in PDP
changes.

A phase shift, including a change in the peak location, also
occurs in SW in CDP. Using (6) and (9), we can write (10) as

Y j
u,v[k] = Xu,v[k]exp

(
−j2πτk

NFFT

)
exp(jθτ ), (18)

where

θτ =
−2πτnsc

start

NFFT
. (19)

So, the time domain sequence of Y j
u,v[k], y

j
u,v[n], is

yju,v[n] = xu,v[n− τ ]exp(jθτ ). (20)

In the proposed ML-based algorithm, data pre-processing
aims to guarantee the same detection performance regardless
of the TA by making all SWs used as machine learning
inputs have a similar shape. To achieve this, the peak lo-
cation of any SW should be the same, and the phase shift
should be corrected. Fig. 1 illustrates the structure of the
proposed ML-based PRACH preamble receiver, respectively.
First, CDPu[n], the average of all CDP j

u [n], is obtained as
follows:

CDPu[n] =
1

NRX

NRX∑
j=1

CDP j
u [n]. (21)

Then, SW in CDPu[n], DCDP
u,v [n], is defined as

DCDP
u,v [n]

= {CDPu[n]|vNSW + 1 ≤ n ≤ (v + 1)NSW } .
(22)

Using (16), the proposed algorithm estimates the peak
location of DCDP

u,v [n], τ̃ , in the same manner as in the con-
ventional algorithm. With τ̃ , data pre-processing is performed
as follows:

DCDP,α
u,v [n]

= Dc
u,v [(n+ α− τ̃) mod NSW ] exp(−jθ̃τ )

(23)

for n = 1, · · · , NSW and

θ̃τ = −
(
nsc
strartτ̃

NFFT

)
, (24)

where θ̃τ denotes the estimated phase-shift value using τ̃
based on (20). DCDP,α

u,v [n] is the data pre-processing result
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Fig. 1. Structure of proposed PRACH preamble receiver

TABLE I
PROPOSED FNN MODEL STRUCTURE

Layer Info
Input nums of nodes : 2NSW

Dense nums of nodes : 64
Activation func ReLu
Dense nums of nodes : 64
Activation func ReLu
Dense nums of nodes : 64
Dense nums of nodes : 1
Activation func sigmoid

of DCDP
u,v [n], which is an SW with a specific point, α, as a

peak location and phased shift corrected.
After the data pre-processing step, the proposed algorithm

uses Su,v[n], which comprises the real and imaginary parts of
DCDP,α

u,v [n], as an input to the ML model.

Su,v[m] =

{
R
(
DCDP,α

u,v

[
m
2 + 1

])
, for odd m.

I
(
DCDP,α

u,v

[
m
2

])
, for even m.

(25)

for m = 1, 2, · · · , 2NSW . Here, R (f [n]) and I (f [n])
denote real and imaginary parts of f [n] respectively.

The proposed algorithm uses an FNN as the ML model.
Table I lists the structure of the proposed FNN model. The
training dataset for the ML model comprised Class 1 (de-
tected), an SW generated using a PRACH preamble with
noise with a specific SNR. Class 0 (not detected) is an SW
generated only using noise with a specific SNR, and the
training dataset was used for pre-training the ML model after
the pre-processing step. Because the proposed FNN is a binary
classification, the sigmoid function is used at the output layer
[9]. Hence, if the output is less than 0.5, it is classified as class
0; if it exceeds 0.5, it is classified as class 1. If a specific SW
is classified as class 1, the identifier of the UE corresponding
to SW, ID, and the estimated TA, τ̂ , are set to u, v of that
SW and τ̃ respectively.

IV. NUMERICAL RESULTS

The 3rd Generation Partnership Project (3GPP) specifies the
performance requirement of PRACH preamble detection [10]
as follows:

TABLE II
SIMULATION ENVIRONMENT AND PARAMETERS

Items Value
NCS 23
Preamble format C0
v 0
LRA nums of nodes : 64
Sub carrier space (SCS) 15 kHz
NFFT 1024
Number of rx antennas(NRX ) 2
Number of tx antennas(NTX ) 1
SNR of training data sets -16 – -8 dB
Iteration in each SNR 105

Channel AWGN
SNR range -10.3 – -5.3 dB
Time error tolerance (β) 0.52 µs (7 samples)
Mode Normal

• If the BS detected only transmitted PRACH preamble,
and the estimated TA satisfies the following equation,
then this is regarded as detection.

|τ − τ̂ | < β, (26)

where τ is the real TA, β is the sampled time error
tolerance with sample rate, Ts.

• When only noise is transmitted, if even one SW is
determined as detected, then this is regarded as false
alarm.

• In PRACH preamble detection, Pd should be higher than
0.99, and Pf should be lower than 0.001.

Table II shows the simulation environment based on 3GPP
Specifications [9]. Moreover, Ts was 1

NFFTSCS
∼= 0.0651

µs, so β was 0.52us
Ts

= 7. Simulation results and training
datasets were obtained through numerical experiments With
a repetition of 105 times.

As a training dataset, data in the SNR range of -16 to -
8 dB in units of 2 dB were used individually in the AWGN
channel. The lowest SNR that satisfies the 3GPP requirement
(Pd ≥ 0.99, Pf ≤ 0.001) for the conventional algorithm was
–8.5 dB and the lowest SNRs for the proposed algorithm
using training data with SNRs of –16dB, −14dB, −12dB,
−10dB, and –8dB were –7.5dB, −9.8dB, −9dB, −8.5dB,
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Fig. 2. Pd and Pf for each SNR with the training data with AWGN channel
of −10dB
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Fig. 3. Pd for detection schemes optimized for each SNR

and –8.1dB, respectively. In addition, to find the optimal SNR
of the training dataset in the proposed algorithm, the Pd and
Pf of each SNR of the training data in AWGN channel of
−10dB are shown in Fig. 2. In the −10 dB AWGN channel,
only the case using training data with an SNR of -14 dB
almost satisfies the 3GPP requirement, and the SNR gain of
the optimal proposed algorithm compared to the conventional
algorithm was 1.3 dB.

To demonstrate the performance gain by improving the input
information from PDP to CDP, we compared the performance
of the ML-based algorithm using PDP as an input, PDP-FNN,
and the proposed algorithm, CDP-FNN. In the ML model for
PDP-FNN, the number of input nodes is set to NSW , but all
other structures are the same as in the proposed algorithm,
and a training dataset with an SNR of -10 dB was used. The
superiority of CDP-FNN over PDP-FNN is confirmed from
Fig. 3.

V. CONCLUSION

We proposed an efficient ML-based preamble detection for
PRACH preamble ID and TA by leveraging appropriate ML
methodology. The peak location was first identified through
the conventional algorithm to construct an ML model that
guarantees the same detection performance regardless of TA
while keeping the number of parameters small. Subsequently,
through data pre-processing using the peak location, the shape
of the input data was made similar to that of the training
data. In addition, by using CDP, which was first proposed in
this paper, as input data, we could use the phase information
of the input data. The power information and the phase-
shift correction scheme for pre-processing for CDP were also
shown mathematically. Through numerical experiments based
on the 3GPP conformance test, we compared the performance
of the conventional and proposed algorithms in an AWGN
channel environment. Our results showed that the proposed
algorithm using an SNR of -14 dB in the training dataset
had an SNR gain of 1.4 dB compared to the conventional
algorithm. Furthermore, to demonstrate the usefulness of CDP,
we compared the performance of the proposed scheme (CDP-
FNN) with that of the ML-based detection algorithm using the
PDP as input data (PDP-FNN). Consequently, the CDP-FNN
has an SNR gain of 0.9 dB compared to the PDP-FNN. In
conclusion, the proposed scheme has been shown to possess
a reasonable potential to be an efficient PRACH preamble
detector in conjunction with the ML methodology.
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