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Abstract—In B5G networks, we introduce an innovative data
transmission strategy, latent code transmission, tailored for
applications that gather data from distributed devices and run
deep learning algorithms on a centralized server. The essence
of our approach is its adaptability to varying wireless channel
conditions: it sends comprehensive original data during optimal
channel conditions and, when conditions are suboptimal, pro-
cesses the preliminary stages of the deep learning model at the
device end, thereby shrinking the data size before transmission.
The distinct advantage of our method is its ability to naturally
reduce data size through the deep learning pipeline, obviating the
need for an additional compression/decompression phase. This
results in minimal extra computational demands compared to
locally executing the deep learning model.

Index Terms—B5G network, Latent Code Transmission, Deep
Learning Application.

I. Introduction

The burgeoning interest in autonomous driving technology
is evident in today’s era. The automotive industry, paralleling
the evolution of electric vehicles, is heavily investing in the
research and development of autonomous driving technology,
viewing it as a catalyst for mobility innovation [1]. However,
transitioning to autonomous vehicles is not as simple as
merely upgrading the current vehicles within the existing
infrastructure. Enhancing safety would involve acquiring more
information through communication with Road Side Units
(RSUs) or other vehicles. In this context, the integration
of the Cellular Vehicle-to-Everything (C-V2X) technology
can foster the development of a connected intelligence-based
autonomous driving system, marking a genuine stride towards
mobility transformation [2].

Meanwhile, the manufacturing and logistics sectors are
showing an intensified interest in robotic innovations [3]. Sev-
eral countries face challenges in recruiting workforce in these
sectors. The surge in labor costs, a decline in the working-
age population, and a societal inclination to avoid hazardous
working environments contribute to these challenges. Thus,
the introduction of robots to enhance productivity and ef-
ficiency is garnering attention. Similar challenges observed
in the autonomous driving sector emerge here again. No
matter how advanced an individual robot becomes, building
a purely robotic system without environmental interactions is
exceedingly challenging. Constructing collective intelligence

through information exchange between robots or with their
environments might be the solution. Depending on the situ-
ation, specialized networking systems like private 5G can be
employed [4].

In the past decade, the rapid progression of deep learning
technologies has spurred attempts to integrate deep learning
into various sectors. Deep learning with Internet-of-Things
(IoT), in particular, has risen as a research topic of significant
interest in recent years [5]. Advances in data communication
and processing capabilities have made it feasible to gather
and share data across multiple devices. Unlike the traditional
centralized deep learning models, where a central server
processes all the data, distributed deep learning leverages
data scattered across numerous devices. This approach offers
several advantages: 1) by allowing devices to learn directly
from their data, it cuts down on the time and cost associated
with central data transmissions. 2) processing data on-site can
minimize risks related to data breaches and privacy concerns.
However, distributed deep learning comes with its challenges,
such as the complex issue of synchronizing models being
trained simultaneously on different devices. Variabilities in
computational capacities and storage across devices can also
pose difficulties in ensuring a uniform learning environment.
Moreover, real-world applications need to consider challenges
like communication delays between devices, data imbalances,
and data quality variations. Researchers are developing diverse
techniques, including efficient communication mechanisms,
model synchronization strategies, and data quality adjustment
methods, to address these issues [6]–[8]. Recently, the research
focus has shifted beyond simple distributed learning method-
ologies, emphasizing applicability and efficiency in real-world
scenarios. Notably, the convergence of emerging technologies
like edge computing, beyond 5G (B5G), and 6G is further
enhancing the performance and efficiency of applications with
deep learning. There are applications mandatorily requiring
consistent and real-time B5G wireless communication:

• Disaster Response Drones: In the event of natural dis-
asters or accidents in specific areas, drones capture the
on-site situation and transmit it in real-time to rescue
teams. These drones then employ deep learning to analyze
optimal rescue or evacuation routes.
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• Remote Oceanic Observation Stations: Stations located
deep within the ocean send collected data to research
centers via satellite communication. This data is used
for monitoring marine ecosystems or changes in sea
temperatures.

• Unmanned Vehicles (e.g., UAVs or underwater robots):
Deployed for exploration or monitoring purposes in spe-
cific areas, they continuously transmit data to a central
server or control center, depending on their location or
environmental conditions.

• Smart City Infrastructure: Data collected from sensors
and cameras throughout the city are wirelessly transmitted
in real-time to a central data center. This data is then
utilized for optimizing tasks like traffic management,
energy consumption, and safety monitoring.

• Real-time Location-based Services: These services track
the user’s current location and movements in real-time.
Based on this information, they offer services like nearby
points of interest, warnings of dangerous areas, or route
recommendations.

In the context of B5G networks, we propose an efficient data
transmission technique designed for applications that receive
data from distributed devices and execute deep learning algo-
rithms on a server. Our proposed method adapts to wireless
channel conditions: when the channel state is favorable, it
transmits the original data with extensive content; conversely,
in unfavorable conditions, it initiates the initial layers of the
deep learning model on the device side, reducing the data
size prior to transmission and the latent code is transmitted.
A key advantage of our approach is that, instead of adding
a separate compression/decompression process to decrease
data size, it leverages aspects of the deep learning process
where size reduction naturally occurs. This not only eliminates
the need for additional processes but also ensures minimal
additional computational overhead compared to executing the
deep learning model locally.

II. RelatedWork

In the work by Sun et al. [9], the authors addressed the
optimization problem of wireless resource management using
Deep Neural Networks (DNN). They proposed a learning-
based approach to facilitate real-time resource allocation by
approximating the complex mapping between the inputs and
outputs of resource allocation algorithms. Our study, in con-
trast, centers on formulating data transmission strategies by
repurposing the architecture of pre-existing deep learning
models to adapt to real-time channel changes, aiming to utilize
the given wireless network environment efficiently.

Le et al. [10] underscored the pivotal role of accurate
channel estimation in wireless networks and introduced a novel
approach using machine learning. By leveraging deep learning
techniques, they surpassed traditional methods in enhancing
channel estimation accuracy. Our research, focused on dy-
namic data transmission adaptation, capitalizes on the merits
of pre-existing deep learning techniques for specific applica-
tions. We can assert its progressive nature in recycling these

techniques for improving wireless communication strategies,
thereby reducing the overhead of additional implementation or
execution.

Patnaik et al. [11] expanded on the capabilities of neural
networks and explored their diverse applications in wire-
less communication engineering. Their paper highlights the
broader potential of neural networks in the optimization of
wireless communication systems, emphasizing the transition
from extended analysis phases to rapid product development.
While our emphasis is on adjusting data transmission strate-
gies, their work elucidates the extensive utility of neural
networks in the wireless domain.

III. Proposed Scheme

A. System Model and Problem Statement

Consider a network-based deep learning application. The
server designed for this application receives data from remote
data acquisition or sensing equipment. Equipment in remote
locations transmits data via the B5G network. It is presumed
that the wireless channel fluctuates over time, and the B5G
network is capable of estimating these changes. Regarding
the deep learning model, it is assumed that when data passes
through the input layer, certain layers may experience a
reduction in the overall data size of the latent code. Indeed,
many existing deep learning models exhibit this characteristic.
Additionally, we only consider models that have already
been trained. Training processes, such as backpropagation, are
outside the scope of this study, and we focus on the inference
procedure.

Conventional data transmission systems predominantly uti-
lize static server-client architectures, which can result in sub-
optimal performance under dynamic and bandwidth-limited
conditions. In such contexts, the primary challenge lies in
efficiently transmitting substantial data volumes with mini-
mized latency, given the variable quality of the communication
channel. In order to make the data size suitable for trans-
mission, additional compression and decompression processes
were required. We want to investigate a method that produces
the same performance while excluding additional processes as
much as possible by utilizing the compressibility of the latent
code of the deep learning model.

B. Latent Code Transmission

The proposed system involves an IoT device equipped with
onboard processing capabilities and the ability to interact
with a central server. The device and server collaboratively
make decisions on data transmission strategies based on the
real-time assessment of the network conditions. When the
network channel is optimal, the IoT device serves as a direct
pathway for data to travel through, facilitating rapid data
transfer between endpoints. Meanwhile, when the network
quality deteriorates, latent code transmission comes into play.
The rationale is to enhance adaptability by enabling the system
to deal with varying network conditions more effectively. The
process of latent code transmission is as follows.
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1) Channel State Information (CSI) Acquisition: In a B5G
network, the User Equipment (UE), which in this context
is the IoT device, transmits its channel state information
through the PUCCH (Physical Uplink Control Chan-
nel) or PUSCH (Physical Uplink Shared Channel). In
response, the base station (either eNB or gNB) provides
feedback to the device using the PDCCH (Physical
Downlink Control Channel).

2) Adaptive Modulation and Coding (AMC): Based on
the CSI, both the IoT device and the base station
decide on an appropriate modulation and coding scheme
for transmissions over PDCCH and PUSCH. In good
channel conditions, a higher rate modulation scheme can
be used, while in poor channel conditions, a more robust
modulation and coding scheme is chosen to reduce the
probability of errors.

3) Latent code determination: Depending on the determined
data rate, the amount of data that can be transmitted
during the limited time budget required by the given
application is determined, and the deep learning model
is advanced to the level required locally to obtain a
latent code that can transmit this amount of data. At
this time, the payload is added because the server needs
to be informed of which layer the data to be transmitted
is, but the amount is very small.

4) Transmission Power Control: The IoT device adjusts its
transmission power for signals sent over the PUCCH
and PUSCH. This adjustment is based on the feedback
received from the base station over the PDCCH.

Overall procedure is illustrated in Fig. 1. Our approach is
designed to address the challenges posed by dynamic network
conditions in B5G communication environments. To achieve
efficient and low-latency data transmission, we propose a novel
algorithm that combines adaptive neural network partitioning,
localized processing, and distributed computation. Leveraging
real-time channel information, our algorithm dynamically ad-
justs the data transmission strategy based on network quality.
Since the device has onboard processing capabilities, we
consider splitting the deep learning model into two parts: one
part that runs directly on the device and another part that runs
on the central server. This way, the device can handle initial
data processing and feature extraction locally, reducing the
amount of data that needs to be transmitted. The central server
can then focus on higher-level decision-making.

IV. Experiment Results

In our study, we executed an experiment to validate the ef-
ficacy of the Latent Code Transmission approach. We utilized
a mobile robot, equipped with a camera, that continuously
transmitted the captured images to a designated server using a
5G network. The images captured by the camera had a reso-
lution of 896×896×3 in the RGB format. Upon receiving, the
server processed these images with the pretrained VGG model
[12] to conduct image classification. For our experiment, the
VGG-16 is adjusted to accept an input size of 896×896×3.
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Fig. 1: Diagram of Proposed Scheme.

TABLE I: Model parameters.

Layer Output Dimension Data Size (MByte) Latent Code Transmission
Original 896×896×3 2.296875 Tx. in good channel

Preprocess 224×224×3 -
Conv1 224×224×64 -
Conv2 224×224×64 -
Pool 112×112×64 3.0625

Conv3 112×112×128 -
Conv4 112×112×128 -
Pool 56×56×128 1.53125 Tx. in normal channel

Conv5 56×56×256 -
Conv6 56×56×256 -
Conv7 56×56×256 -
Pool 28×28×256 0.765625

Conv8 28×28×512 -
Conv9 28×28×512 -
Conv10 28×28×512 -

Pool 14×14×512 0.3828125 Tx. in bad channel
Conv11 14×14×512 -
Conv12 14×14×512 -
Conv13 14×14×512 -

Pool 7×7×512 0.095703125
FC1 4096 -
FC2 4096 -
FC3 1000 -

Following the preprocessing layer, several convolutional layers
are sequentially aligned as described in Table I.

We categorized the network’s status into three levels—good,
normal, and bad—based on the Reference Signal Received
Power (RSRP) and Reference Signal Received Quality
(RSRQ) values. In optimal channel conditions, the camera’s
captured image was relayed unaltered, resulting in a trans-
mission of approximately 2.296875 MB per image. Under
normal channel conditions, the robot transmitted the latent
code after processing up to the 4th convolutional and pooling
layer, leading to a transmission of around 1.53125 MB per

1024



Algorithm 1 Channel-aware Latent Code Transmission

1: Constants:
2: rsrpGoodThreshold = −80
3: rsrpNormalThreshold = −100
4: rsrqGoodThreshold = −10
5: rsrqNormalThreshold = −20
6:
7: Get RSRP and RSRQ values
8: if RS RP ≥ rsrpGoodThreshold then
9: rsrpCondition← Good

10: else if RS RP ≥ rsrpNormalThreshold then
11: rsrpCondition← Normal
12: else
13: rsrpCondition← Bad
14: end if
15: if RS RQ ≥ rsrqGoodThreshold then
16: rsrqCondition← Good
17: else if RS RQ ≥ rsrqNormalThreshold then
18: rsrqCondition← Normal
19: else
20: rsrqCondition← Bad
21: end if
22: if rsrpCondition == Bad or rsrqCondition == Bad then
23: Set channelCondition to Bad
24: else if rsrpCondition == Normal or rsrqCondition ==
Normal then

25: Set channelCondition to Normal
26: else
27: Set channelCondition to Good
28: end if
29: Call LatentCodeTransmissionMode(channelCondition)

image—this constitutes just 66.7% of the raw data.1 Con-
versely, in poor channel conditions, processing was extended
up to the 10th convolutional and pooling layer prior to latent
code transmission. Consequently, only about 0.3828 MB was
transmitted per image, which amounts to a mere 16.7% of the
raw data. Algorithm 1 describes a technique for transmitting
the appropriate Latent Code based on the perceived channel
condition.

A pre-trained model is installed in advance on both the
server and the robot. Depending on the channel conditions, the
robot processes up to a specific layer and then transmits the
generated latent code. Through our experiments, we achieved
a top-5 accuracy performance of 88.94%. When processing the
same image on the server compared to locally, the performance
exhibited a top-5 accuracy of 90.38%. Additionally, through
Latent Code Transmission, we reduced the data transmission
volume by approximately 30%. We confirmed that the scheme
we proposed operates effectively under varying channel con-
ditions. Executing portions of the deep learning model within
the robot, based on the channel state, offers the advantage

1We assumed that each element of the latent code tensor utilizes the float32
data type.

of diminishing the data size for transmission. However, this
approach utilizes more of the robot’s energy. Given that the
robot’s computing capacity is inferior to that of the server, the
execution time of the deep learning model could be extended.
Consequently, it is not always advantageous to process the
deep learning model through deeper layers, even if it results
in a reduction in data size.

V. Conclusion
Within the context of B5G networks, our research intro-

duced a novel data transmission approach, specifically tai-
lored for applications that harnessed data from geographically
dispersed devices to execute deep learning algorithms at a
central server. Central to the methodology we developed was
its inherent adaptability to fluctuating wireless channel condi-
tions. We transmitted exhaustive original data during optimal
channel conditions and minimized data size by initiating
preliminary deep learning processing during suboptimal con-
ditions, optimizing data transfer, i.e., latent code transmission.
The most distinguishing feature of our proposed technique
was its seamless integration of data size reduction within the
deep learning process, which eliminated the need for separate
compression/decompression steps. Furthermore, our empirical
evaluations indicated only marginal additional computational
loads compared to standard local deep learning model im-
plementations. This research has provided a foundation for
enhancing efficiency in data-driven applications within the
burgeoning B5G ecosystem.

This research can be interpreted as an integration of edge
computing and deep learning. For a more equitable perfor-
mance assessment, it is imperative to consider processing
delay. Specifically, servers with superior processing capabil-
ities will likely experience reduced processing delays, while
mobile robots with comparatively inferior processing perfor-
mance might face increased delays. Incorporating performance
degradation, attributed to on-robot processing for latent code
transmission, into the evaluation will enable a more balanced
assessment of the system’s efficacy. This is one of our potential
future research directions.
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