
Federated Learning with Variational Autoencoder
for Popularity Profile Prediction

Minkyun Ahn† and Minseok Choi†
†Department of Electronic Engineering, Kyung Hee University, Yongin, South Korea

E-mails: amky94@khu.ac.kr, choims@khu.ac.kr

Abstract—Motivated by increasingly exploding data traffic of
online video services, the prediction of the popularity profile
of video contents becomes very important for network traffic
prediction, recommendation systems, and wireless caching. This
paper proposes a federated learning-based popularity prediction
scheme using a variational autoencoder (VAE), which copes with
the situation where users are moving and/or their data privacy
should be protected. Users are participants of federated learning,
and the VAE model is trained by user’s own request history;
afterwards, randomly generated samples from the pretrained
decoder of VAE can mimic the original popularity profile. We
adopt the MovieLens dataset to validate the proposed model,
and experimental results show that our scheme predicts the
popularity profile almost perfectly.

Index Terms—Federated learning, Variational autoencoder,
Popularity prediction

I. INTRODUCTION

With multimedia services making up 75% of global data
traffic [1], a multitude of techniques have been investigated
for video traffic, which constitutes a significant portion of
the total multimedia service traffic. Analyzing traffic patterns
in online video services has revealed characteristics where a
minority of content accounts for the majority of traffic [2].
The probability of users requesting specific videos, i.e., the
content popularity profile, has been mathematically modeled
using the Zipf distribution [3]. Furthermore, the authors of
[4] have delved into fine-grained mathematical modeling of
user-request probabilities for content based on the real-world
dataset. However, content evolves over time, with new content
emerging and old content vanishing. Moreover, popularity
distributions can undergo significant shifts over time due to
social trends. In addition, within limited local regions, user
mobility can also influence the distribution of content popu-
larity within that region. As a result, approximating popularity
distribution with static mathematical distribution models can
lead to substantial disparities when compared with actual
datasets. To address this challenge, researches on deep learning
techniques to predict network traffic patterns and time-varying
content popularity profile have been actively conducted [5],
[6].

In accordance with the stringent regulation law [7], users’
content request information has been considered as privacy-
sensitive data, and this law mandates that even when users
request and receive content through base stations (BSs), the
BSs are prevented from collecting such data. Beyond legal
requirements, users could also choose not to share their
personal information as well as their own request history.

Additionally, many users come into and leave the coverage
region of the BS in cellular systems, resulting in the lacking
access of the BS to the users’ content request history. In
such scenarios, due to restrictions on data collection by base
stations or parameter servers, it becomes necessary to leverage
distributing machine learning (ML) over edge devices, where
users participate in training. Federated learning, as one of the
most popular distributed learning techniques, has demonstrated
the capability to converge to the result of a centralized learning
while ensuring privacy protection [8]. In federated learning,
users conduct training processes separately and contribute to
training a shared global model.

In this respect, there have been extensive studies on fed-
erated learning-based popularity prediction; however, most of
them focus on federated learning over BSs or edge servers,
not individual user devices. In [9], edge nodes gather the user
request information and train a global model in a federated
setting using convolutional recurrent neural network (CRNN)
for predicting the future popularity. The context-aware popu-
larity prediction policy is learned by federated learning over
multiple fog access points (F-APs) based on the estimated
user preference which is separately learned at the client side
in [10]. In [13], variational autoencoder (VAE) is adopted to
estimate the data distribution from users’ training datasets. The
request history of multiple users is an input of the VAE to
predict the popularity of all contents including unseen ones,
which means that users’ private data needs to be collected
to train the VAE. However, these works need to gather the
raw data of users at the central node, which reveals the user
privacy. On the other hand, the authors of [11] model the
time-varying heterogeneous user preference using the Zipf
distributions with different factors that change over time based
on a Markov chain. Then, each user participates in federated
learning by learning its own local popularity, but this method is
not evaluated with the real-world dataset. Instead of predicting
preference and popularity separately, the weighted summation
of user preference and content popularity is predicted in [12] to
secure users’ preferred content lists, and Lastfm-1K datasetis
adopted to validate their own model. However, Lastfm-1K
dataset is the music request dataset which is not related to
the video request, and they utilize the simple fully connected
neural networks.

This paper proposes a federated learning approach with
VAE for predicting the content popularity profile under the
MovieLens 1M dataset which is relatively sparse than Lastfm-
1K dataset. We consider the scenario in which users’ raw
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data should not be shared with any other nodes to preserve
their privacy; therefore, each user is a participant of federated
learning and trains a local model based on its own request
history only. Simulation results show that the predicted popu-
larity profile is very close to the real data, and also the trained
model anticipates the movie files even requested by users who
did not participate in federated learning.

II. SYSTEM MODEL

A. Problem Setup: Popularity Prediction

This paper considers the scenario in which there are M
edge servers (ESs) having their own coverage regions and
these regions are not overlapped. In the region of ES m, there
are Km users of the online video service. Users individually
request contents to their ESs, and the ES should respond to
these requests. We assume that the ES proactively caches
at most L popular contents with the limited storage size in
advance of user requests. Therefore, when a user requests a
video file, the ES can directly provide the desired content
to the user if it is cached, and this event is called as cache
hit. Otherwise, the request is forwarded to the central server
which has an access to the file library; therefore, the server
delivers the content through the ES. This caching technique
significantly reduces the content delivery latency as well as
backhaul costs for communicating with the central server.
Caching the most popular contents is an intuitively reasonable
method; however, this requires the file popularity distribution
that is now known in advance in practical scenarios. To address
this challenge, this paper proposes the deep learning-based
popularity prediction approach.

Motivated by the increasing concerns of data privacy and
stringent regulation law about this concern [7], this paper
considers the video users who are not willing to let their
previous video viewing records open to any other users
and edge servers. Accordingly, our objective is to predict
the popularity distribution of content across all users in the
regions of a single edge server without directly obtaining
individual user content request history. Federated learning is
the key distributed learning technology to train a global model
without gathering local training data separately stored in user
devices. Additionally, since not all users agree to participate in
federated learning, we predict the videos likely to be requested
by other users based on the estimated popularity profile using
the deep neural network (DNN). In cellular networks, users
with mobility can come into or leave the given region of the
edge server. The popularity prediction method could be also
applied to estimate the new coming users’ future requests.

B. Federated Learning

This subsection explains the federated learning process of
a single edge server m and Km = K users in its cov-
erage region. Let xk denote the dataset of user k for all
k ∈ {1, 2, · · · ,K}, which represents the user k’s content
request history in our problem setup. The union of all users’
datasets is denoted by X =

∑K
k=1 xk. The goal of federated

learning is to train a global model w∗ which minimizes the
following global loss function:

min
w

F (w) = min
w

K∑
k=1

|xk|
|X|

Fk(w), (1)

where Fk(w) is the local loss function of data samples in client
k which is defined as Fk(w) = 1

|xk|L(xk,w). According to
FedAvg algorithm [8], at the beginning of each communication
round, the subset of users, denoted by S , is randomly selected,
and they receive the model w(t) from the ES. Then, each user
k performs E local updates with the initial model wk(t) =
w(t) as expressed by

wk(t+ i+ 1) = wk(t+ i)− η∇Fk(wk(t+ i)), (2)

for all i ∈ {0, 1, · · · , E}, where η is the learning rate and ∇Fk

represents the gradient of loss. After K local updates, users
upload the learned weights to the ES, and the ES aggregates
them in accordance with w(t + E) =

∑
k∈S

|xk|∑
k∈S

|xk|wk(t + E)

which is a global model. This process iterated to make the
global model converge to the optimal model as shown in [14].

III. POPULARITY PREDICTION BY VARIATIONAL
AUTOENCODER

A. Variational Autoencoder
We adopt VAE as a deep learning model to train prediction

of the content popularity distribution over the target region
because VAE is powerful to extract the latent features from
input data and generate samples belonging to the probability
distribution of input data. VAE is a type of autoencoder (AE)
that fundamentally learns to compress input data into a lower-
dimensional space and then reconstructs it to its original
dimensions, specializing in the extraction and compression of
data features. However, different from conventional AE, VAE
is capable of generative modeling by learning the inherent
probabilistic distribution within the data. Accordingly, VAE
can produce outputs that possess similar characteristics to the
input data. For this purpose, the VAE structure fundamentally
consists of an encoder and a decoder. It utilizes Bayesian
probabilistic inference to learn the probabilistic distribution
of the desired population [18].

1) Encoder: The encoder functions to extract features from
input x by compresses this into a latent vector, denoted as z.
To accomplish this, the encoder approximates the distribution
using the posterior probability q(z|x) of z given x. Generally,
the encoder output is assumed to follow a Normal distribution;
therefore, the output consists of the mean µ, and the standard
deviation σ. Consequently, the latent vector is derived from
z = µ + σ2 · ϵ, where ϵ ∼ N(0, 1) used for the reparame-
terization trick to ensure differentiability.

2) Decoder: The decoder serves to reconstruct the input
(i.e., latent vector z) into its original dimensions. To accom-
plish this, the distribution is approximated using the posterior
probability p(x|z). In other words, given z by the encoder, the
decoder generates the data, denoted as x′, which has the same
dimensions as x and exhibits similar features.
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Fig. 1: Architecture of VAE

3) Loss Function: When training the decoder and encoder,
the loss function is derived from the marginal log-likelihood
using Bayes’ theorem and the KL divergence, as given by

log pθ(x) =

∫
qϕ(z|x) log pθ(x)dz

−KL(qϕ(z|x)||p(z)) +KL(qϕ(z|x)||p(z|x)) (3)

≥
∫

qϕ(z|x) log pθ(x)dz−KL(qϕ(z|x)||p(z)). (4)

Since the KL divergence is always non-negative, it is apparent
that one can derive (4) as a lower bound on (3). This is referred
to as the Evidence Lower Bound, and it is applied as an
optimization criterion in VAE. In (4),

∫
qϕ(z|x) log pθ(x)dz

and KL(qϕ(z|x)||p(z)) are the reconstruction error and reg-
ularization error, respectively [18]. Here, the reconstruction
error is an element exhibiting AE characteristics, reflecting
how closely x′ has been reconstructed to x. The regularization
error involves imposing a prior to ensure the assumption that
z induced by the encoder for input x follows the Gaussian
distribution.

B. Data Preprocessing

We utilized the MovieLens 1M dataset [15], which contains
1,000,209 ratings on 3952 movies made by 6040 users. Al-
though this is the rating information, many studies considered
this as the movie request data and predicted their popularity
profile. Since the MovieLens dataset has individual user’s data,
it is appropriate for our federated learning scenario in which
each user trains a local model based on its own request data
only. In addition, zip-code data is included in the MovieLens
dataset, and we can observe the regional preference and test
the prediction model for various popularity profiles depending
on the spatial characteristics. However, in a single zip-code,
the number of data samples is not sufficient to train a deep
learning model. Therefore, we cluster multiple zones based on
their geographic closeness. Specifically, all the users having
the same first two digits of the zip-code are considered to
be located in the region of the same edge server. Among
3952 movies, a substantial number of movies have never

been requested or watched only once. These the least popular
movies do not affect the popularity profile very much, but they
inject too excessive variance in the data statistics and make the
training difficult. Accordingly, we excluded the corresponding
movie IDs that are not requested by 10% of the total users from
the dataset. For the same reason, users whose request numbers
are smaller than 25 are neglected. Since the MovieLens dataset
actually contains the rating information, it is essential to note
that every user rates (i.e., requests) a single movie ID once
at most. Consequently, the training data of user k becomes
the following binary vector xk = [bk0 , b

k
1 , ..., b

k
N−1, b

k
N ], where

bki ∈ {0, 1} for all i ∈ {0, 1, · · · , N} which represents the
indicator of whether that movie ID i is requested by user k.
Here, N is the number of users after filtering users whose
request numbers are very small.

C. Training and Inference

In each zone, the designated edge server and users in this
clustered region perform the federated learning algorithm with
VAE. Each user k utilizes a full batch of its dataset xk to
train a local VAE model. The request history of a user can be
divided into multiple mini-batches; however, since the input
binary vector is sparse, each mini-batch vector could have very
small number of ones, which spoils the training process. After
E local updates, users upload their local VAE models to the
ES, and the ES aggregates the uploaded model parameters to
generate a global model.

After completing federated learning, Monte Carlo simula-
tion is conducted with the global VAE decoder to predict the
content popularity profile. As the VAE decoder is fundamen-
tally a generator, the output of the decoder can inherently
have a slight variance from our desired result. Since the
decoder generates a sample, we first repeatedly obtaining
output samples under the identical condition and derive the
final popularity distribution by averaging output samples. To
extract sufficiently many outputs from the decoder, random
numbers sampled from a standard Normal distribution are fed
into the decoder as the latent vector.

D. Privacy Issue of Federated Learning with Variational Au-
toencoder

While VAE excels at predicting the original probability
distribution from a small number of samples, this inherently
poses a fundamental issue that can make the user privacy
revealed. Although federated learning prevents users’ content
request history from being directly shared with the edge server,
the well-trained VAE decoder can almost perfectly reconstruct
users’ training data. This stems from a problem occurring
during training VAE, where its input data is set as the target
of VAE. This fundamentally challenges the very reason for
employing federated learning.

To address this problem, two main approaches can be
considered: 1) preventing the edge server from accessing
the full decoder model of the trained VAE, and 2) ensuring
user data cannot be predicted from the local VAE decoder
model. In the first approach, the edge server can upload only
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Algorithm 1: Federated Learning with Variational
Autoencoder

ES executes:
initialize model w(0)
Set wk(0) = w(0), k ∈ S

for global epoch t = 0, 1, ... do
for client k ∈ S parallel do

wk ← w(t)
for local epoch e = 0, 1, ... do

wk ← wk − η∇L(xk,wk)
end
w(t+ 1) =

∑
k∈S

|xk|∑
k∈S

|xk|wk(t).

end
end
for i = 0, 1, ..., N do // Monte Carlo simulation

pi ← si // sampling from decoder
end
p ← 1

N

∑N
i=1pi

a portion of the local VAE decoder model for generating
a global model, while the remaining split model can be
aggregated by the way of decentralized federated learning [16].
Users transmit the VAE decoder model fragments that are not
uploaded to the edge server to all nearby users and receive
their model fragments. This process is iterated multiple times,
with users directly aggregating the received VAE decoder
model fragments. However, when the number of users is large,
decentralized federated learning could not aggregate all users’
model fragments or causes long delays due to asynchronous
aggregations of users. Nonetheless, by adopting an aggregation
method of decentralized learning only for the output layer
or a single hidden layer of the decoder and not disclosing
information about that layer to the edge server, secure model
aggregation can still be achieved.

The second approach involves applying differential privacy
(DP) to uploading local VAE decoder models to the edge
server and their global aggregation. DP is a technique that adds
artificial noise to model parameters, preventing deep leakage
of information about training data from the model or gradient
[17]. However, in this scenario, the objective of using DP is
slightly different that DP can also be employed to prevent the
accurate parameter set of the local VAE decoder model from
being shared with the edge server, thus ensuring user private
data cannot be recovered. Detailed exploration of this aspect
is left for our future work.

IV. EXPERIMENTAL RESULTS

In our experimental setup, the VAE architecture consists of a
hidden layer size of 256 and a latent space size of 32. Gumbel-
softmax function with a temperature of 15 is employed for
applying the canonical reparameterization trick and generating
probabilistic outputs [19]. In federated learning, E = 10 local
epochs in each communication round and total 100 rounds
are conducted. Three different zones whose first two digits of

Fig. 2: Popularity prediction vs. actual per zone

their zip-codes are 55, 94, and 60, are considered to evaluate
the proposed method. Specifically, 183 users, 149 users, and
128 users are assigned for zones 1, 2, and 3, respectively.
We simulate the entire experiments with Windows11, Python
v3.10.10, PyTorch v2.0.0, CUDA v11.8, CuDNN v8.8.1 for
ML software, and NVIDIA 4070 Laptop, Intel i9-13900H, and
RAM 32GB for hardware.

In Fig. 2, the predicted popularity distributions (left) and
real data statistics (right) of three zones are described. We
can observe that the overall shape is similar between the
prediction and actual distribution. In the predicted distribution,
probabilities of popular movies are exaggerated and those
of unpopular ones are underestimated, compared to the real
one. This issue can be partially addressed by fine-tuning the
temperature value of the gumbel-softmax function. Finally,
the result of our federated learning with VAE achieves the
prediction success rate of 90% in the top-100 most popular
movie list. To measure the difference between the predicted
popularity distribution and real one, the mean squared error
(MSE) values are calculated for all zones in Table I. Given this
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relatively low MSE and high prediction success rate in top-
100 movie list, we can conclude that the model’s predictions
are notably accurate.

TABLE I: MSE of the predicted distribution

Zone 1 Zone 2 Zone 3

MSE 8.825× 10−5 8.508× 10−5 7.667× 10−5

Fig. 3: Centralized prediction vs. actual

We also conduct the comparison work with centralized
learning which trains a single VAE model based on all users’
the movie request lists without considering the data privacy.
Fig. 3 shows the comparison of the popularity distribution
predicted by centralized learning with the real one. However,
it shows larger differences with the actual data, compared to
our federated learning approach. Thus, we can observe that
federated learning demonstrates superior results compared to
centralized learning when training a VAE model using the
MovieLens dataset. This is because the target of VAE is
the same as its input data and its objective is to mimic the
distribution of input data, which makes the trained model
biased to the training data. The goal of conventional federated
learning is generalization, i.e., training a global model that also
infers the unseen input data very well. On the other hand, in
our scenario, we assume that request patterns of other users
who do not participate in federated learning will follow the
same popularity distribution. Nevertheless, this potential of
federated learning for unsupervised learning whose target is
the input data needs to be investigated more, and we leave
this as future work.

Lastly, we evaluate how well our proposed popularity pre-
diction algorithm estimates the requested movies of users who
did not participate in the training process. In this experiment,
zone 1 is considered, and 165 users participate in federated
learning, but the remaining 18 users are excluded in the
training process and used for testing the trained VAE model.
The results, which show how similar the most popular movie
list obtained by the trained VAE model is to the movie request
list of 18 non-participant users, are presented in Table II.
Since each user requested a different number of movies, the
VAE model generates a list by selecting movies equal to the

TABLE II: Cache hit ratio for content requests

Client Set 1 (%) Set 2 (%) Set 3 (%)

1 57.93 49.14 36.53

2 75.43 46.56 43.75

3 47.23 84.27 42.29

4 45.61 45.45 25.41

5 51.72 53.19 44.33

6 26.00 34.07 40.38

7 19.72 42.34 32.00

8 37.17 28.75 60.14

9 31.62 17.65 36.26

10 58.66 29.90 56.98

11 58.40 41.73 49.57

12 41.27 41.67 57.78

13 30.95 43.27 46.20

14 26.23 33.63 47.34

15 42.27 50.20 41.82

16 65.11 49.12 41.40

17 71.14 53.36 22.22

18 43.75 29.03 32.26

Avg 46.12 42.60 42.04

number of movies requested by the user, arranged in order of
popularity. Table II then shows cache hit ratios for 18 non-
participant users if the edge server caches the most popular
movie list generated by the VAE decoder. Three different sets
represent the cases in which participants of federated learning
are differently selected. From these results, it can be realized
that caching, based on the learned popularity distribution
through federated learning with VAE, is considerably effective
even for users who do not participate in learning within a zone.

V. CONCLUSION

This paper proposes a federated learning approach with VAE
to predict the content popularity profile, and we evaluate the
prediction performances of our method based on the real-world
dataset, specifically, MovieLens 1M dataset. VAE is efficient
to anticipate the distribution even with the very sparse binary
vector data indicating whether the video was seen or not. Also,
we observe that federated learning could be more powerful
to predict the complicated probability distribution using the
model structure whose target is the same as the input, e.g.,
VAE, than centralized learning. However, there exists a risk
that the user’s private data could be easily revealed by the VAE
decoder, and we present the approaches that can deal with this
challenge.
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