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Abstract—Satellite communications offer the potential of en-
suring global coverage with a substantial capacity. In this paper,
we examine the coverage performance of satellite networks
by considering a distance-dependent line-of-sight (LOS) and
non-LOS (NLOS) channel propagation probability, which takes
into account the shadowing effect. Building upon the stochastic
geometry-based network analysis used for terrestrial networks,
we employ a Poisson point process to model both the satellite
network and its users. Through this approach, we derive a
theoretical expression for the coverage probability with beam
gain under a nearest satellite association rule, providing an
analytical understanding of the satellite network. The accuracy of
the derived expression is confirmed through simulation results.
The derived expression encompasses various network parame-
ters such as satellite density, altitude, channel fading, pathloss,
LOS probability, and beam gain, offering valuable insights into
satellite networks.

Index Terms—Satellite networks, stochastic geometry, coverage
probability, LOS and NLOS channel propagation.

I. INTRODUCTION

The integration of satellite networks with terrestrial cellular
networks has garnered significant attention [1], [2]. In partic-
ular, low Earth orbit (LEO) satellite networks have emerged
as a promising solution for achieving universal coverage with
improved data rates and reduced delays compared to traditional
geosynchronous equatorial orbit (GEO) satellite networks [3],
[4]. To guide the deployment strategy of LEO satellites, it
is crucial to understand the coverage and rate performance.
In this regard, we employ stochastic geometry techniques to
analyze the coverage of satellite downlink networks, taking
into account random channel propagation conditions.

In satellite networks, a key distinction from conventional
cellular networks when using tools of stochastic geometry is
the shape of the network model, which forms a spherical cap
within a finite space. This arises from the geometric character-
istics of user locations and satellite orbits. In previous studies
[3], it was assumed that the distribution of satellite locations
follows a homogeneous binomial point process (BPP) on the
spherical cap. Moreover, in [5] an analytical expression for
coverage was derived specifically for scenarios where satellites
function as relays.

While BPPs are valuable for representing evenly distributed
satellite placements on a spherical cap, their application in
modeling satellite networks is constrained by the assumption
that a fixed number of satellites are visible to a typical user.

To overcome this limitation and achieve a more comprehensive
coverage expression, it is necessary to consider all potential
numbers of visible satellites. However, this approach signifi-
cantly complicates the analysis, making it less manageable.

To address this issue, PPPs have been employed to model
the spatial distribution of satellites. By utilizing a Poisson
point process (PPP), the number of visible satellites becomes
a random variable following a Poisson distribution. In [6], [7],
the downlink coverage probability of a satellite network was
derived by approximating the distribution of contact angles
using the PPP-based approach. In [8], coverage and rate
expressions were obtained for a noise-limited LEO satellite
network. Although earlier works [3], [5]–[9] have extended
the application of stochastic geometry to a finite space (a
finite spherical cap), they have not achieved the same level
of simplicity as in the case of an infinite 2D network plane
[10]–[18]. In [4], this limitation was addressed by deriving the
conditional nearest satellite distance distribution, thereby ex-
panding the scope of satellite network analysis using stochastic
geometry.

In satellite networks, the presence of buildings can obstruct
propagation paths, leading to distinct propagation characteris-
tics such as pathloss exponent, gain, and fading distribution
for line-of-sight (LOS) and non-line-of-sight (NLOS) paths.
Consequently, in [19], the coverage probability in shadowing
channel was derived based on the PPP approach. The derived
expression, however, is limited to a uniform beam gain across
satellites and supported only for a signal-to-noise ratio (SNR)
> 0 dB. In this regard, it is still necessary to perform
a coverage analysis to find a coverage expression that is
compatible with a general beam gain and supported for any
SNR.

This paper provides a analysis of coverage in satellite down-
link networks, considering the influence of shadowing effects.
By leveraging stochastic geometry techniques, we model the
satellite networks as a PPP within a finite space. In the
interference-limited regime, we derive an exact coverage prob-
ability expression with a nearest satellite association rule. The
derived expression incorporates the beam gain of satellites,
satellite density, altitude, channel fading, pathloss exponent,
and LOS probability. Simulations confirm the accuracy of
the derived expression for any SNR values, offering valuable
insights into satellite networks.
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Fig. 1. In the geometry of the satellite network, the satellites are positioned
on the surface of a sphere with a radius of RS. A typical receiver is located
at the coordinates (0, 0, RE), which represents its position above the surface
of the Earth.

II. SYSTEM MODEL

In this section, we describe the network model and the
performance metrics utilized for the analysis of downlink
satellite networks.

A. Preliminaries

The surface of a sphere in three-dimensional space, denoted
as R3, is defined by having its center at the origin, represented
as 0 ∈ R3, and a fixed radius of RS.

S2RS
= {x ∈ R3 : ∥x∥2 = RS}. (1)

A point vector x ∈ S2RS
can be expressed using a polar coor-

dinate system, where it is represented by a pair of elevation
and azimuth angles denoted as 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ 2π,
respectively.

Consider a point process denoted as Φ = {x1, . . . ,xN},
consisting of a finite number of elements located on the surface
of a sphere S2RS

. This point process Φ is referred to as a
homogeneous spherical Poisson point process (SPPP) if the
number of points on S2RS

, denoted as N = Φ(S2RS
), follows

a Poisson random variable. The mean of this Poisson random
variable is given by λ|S2RS

| = 4πR2
Sλ, where λ represents the

intensity of the point process. The probability density function
(PDF) of N becomes

P (N = n) = exp
(
−4πR2

Sλ
) (4πR2

Sλ
)n

n!
, (2)

where |S2RS
| = 4πR2

S is the surface area of the sphere. Given
N , {x1, . . . ,xN} forms a BPP, where xi is independent and
uniformly distributed on the surface of the sphere.

B. Network Model

We consider that the satellites are positioned on the surface
of a sphere with a radius of R. These satellite locations are
distributed according to a homogeneous SPPP with a density
of λ. Thus, we can represent the set of satellite locations as
Φ = {x1, . . . ,xN} where N follows a Poisson distribution
with a mean of 4λπR2

S. Each satellite operates with a transmit
power of P . Additionally, we have a collection of downlink
users. The surface of the Earth, denoted as S2RE

, has a radius
of RE. The user locations on S2RE

are assumed to follow
a homogeneous SPPP with a density of λU. Thus, we can
represent the set of user locations as ΦU = {u1, . . . ,uM},
where M follows a Poisson distribution with a mean of
4λUπR

2
E. It is important to note that the user point process

ΦU is assumed to be independent of the underlying satellite
placement process Φ.

By assuming that both Φ and ΦU follow homogeneous
SPPPs on S2RS

and S2RE
respectively, the statistical distribution

of Φ concerning any point in ΦU remains unchanged under
rotation in R3. This property, known as Slivnyak’s theorem
[10], allows us to consider a typical user located at (0, 0, RE)
on S2RE

without loss of generality. As shown in Fig. 1, we
define a typical spherical cap denoted as A within the field of
view of the typical receiver’s location. The typical spherical
cap represents the portion of the sphere S2RS

that is intersected
by a tangent plane to the sphere S2RE

centered at (0, 0, RE).
According to Archimedes’ Hat-Box Theorem [20], the area of
the typical spherical cap is given by

|A| = 2π(RE −RS)RS. (3)

Additionally, we define a spherical cap that encompasses the
points located within a distance of r from the typical receiver’s
location as follows:

Ar = {x ∈ S2RS
: ∥x− (0, 0, RE)∥2 ≤ r} ⊂ A. (4)

To simplify the analysis, we can focus on the performance
of a downlink user located within the typical spherical cap
without loss of generality. Throughout this paper, we use u1

to indicate the typical receiver.

C. Pathloss and Channel Models

The wireless channel propagation is modeled by incor-
porating both path-loss attenuation and small-scale fading.
The classical path-loss model, which considers the distance
between satellite i and the typical user, is adopted:

∥xi − u1∥−αi = r−αi
i (5)

where αi ∈ {αLOS, αNLOS} when satellite i experiences LOS
propagation and NLOS propagation, respectively.

Now, we incorporate the transmit and receive beam gains
involved in the communication between satellites and the
typical user. The effective antenna gain for the signal path
from satellite i to the receiver is denoted as Gi. To simplify the
analysis, we assume that the receive beam is perfectly aligned
with the antenna boresight of the nearest serving satellite.
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However, for interfering satellites, we assume that the receive
beam is misaligned with their antenna boresights. Then, the
effective antenna gain of the associated satellite and the typical
receiver is GA = Gt

AG
r c2

(4πfc)2
, and that of the interfering

satellite and the typical receiver is Gi = Gt
iG

r c2

(4πfc)2
, where

Gt
A and Gt

i are the transmit antenna gains of the associated
satellite and interfering satellite i, respectively, Gr denotes
the receive antenna gain of the typical receiver, fc denotes
carrier frequency, and c is the speed of light. We note that the
antenna gain model used in our analysis is based on a two-
lobe approximation of the antenna radiation pattern, which has
been previously discussed in works such as [21], [22].

We model the randomness of small-scale channel fading
process using a distance-dependent LOS probability function
pLOS(r): the probability that a satellite located distance r away
from the typical receiver experiences LOS propagation. Let Hi

be the fading from satellite i to the typical receiver. Then, the
distribution of the small-scale channel fading is expressed as

f√Hi
(x) (6)

= pLOS(ri)f√Hi|LOS(x) + (1− pLOS(ri))f√Hi|NLOS(x).

For the LOS fading channel f√Hi|LOS(x), we assume the
Nakagami-m distribution to suitably capture the LOS effects.
Assuming E[Hi] = 1, the probability density function (PDF)
of

√
Hi is given by [23]:

f√Hi|LOS(x) =
2mm

Γ(m)
x2m−1 exp

(
−mx2

)
(7)

for x ≥ 0. For the NLOS fading channel f√H|NLOS(x),
we consider a Rayleigh distribution. Since the Nakagami-m
distribution reduces to the Rayleigh distribution when m = 1,
fH|NLOS(x) can be directly derived from (7) by setting m = 1.
Further, by tuning its parameter m, it is possible to model the
signal fading conditions spanning from severe to moderate,
while making the distribution fit to empirically measured
fading data sets. For example, when m = (K+1)2

2K+1 , (7) resorts
to the Rician-K distribution.

D. Performance Metric

We assume that the typical receiver is served by the asso-
ciated satellite. Let xi ∈ Φ be the location of the associated
satellite, the signal-to-interference-puls-noise (SINR) experi-
enced by the typical receiver located at u1 = (0, 0, RE) is

SINR =
GAPHi∥xi − u1∥−αi∑

xj∈ΦI(xi)
GIPHj∥xj − u1∥−αj + σ2

, (8)

where σ2 denotes the noise power, Hi denotes fading power
from satellite i to the receiver, ΦI(xi) = Φ ∩ A\{xi} for
the strongest association, ΦI(xi) = Φ ∩ Ac

ri for the nearest
association, and Ac

ri = A \ Ari denotes the surface of the
spherical cap A outside of Ari .

Let Φ(A) represent the number of satellites in A. Then
we characterize the coverage probability for the case where

there is at least one satellite exists in A. , i.e., Φ(A) > 0.
Accordingly, the conditional coverage probability is given as

P cov
SINR|Φ(A)>0(γ;λ, α,RS,m)

= P [SINR ≥ γ | Φ(A) > 0]

=P

[
Hi∥xi − u1∥−αi∑

xj∈ΦI(xi)
ḠIHj∥xj−u1∥−αj+σ̄2

≥ γ

∣∣∣∣∣Φ(A) > 0

]
,

(9)

where σ̄2 = σ2

PGA
and ḠI = GI

GA
< 1. The conditional

coverage probability refers to the probability distribution of
the SINR experienced by the typical receiver in the presence
of any satellite base station (BS) within the spherical cap area
A. It quantifies the likelihood of achieving a certain level of
SINR given the presence of at least one satellite BS in the
specified region.

We further obtain the coverage probability by averaging it
over all possible geometries of satellite BSs as

P cov
SINR(γ;λ, α,RS,m)

= P cov
SINR|Φ(A)>0(γ;λ, α,RS,m)P[Φ(A) > 0]. (10)

This average coverage probability provides a comprehensive
assessment of the system’s performance, taking into account
various configurations and distributions of the satellite BSs in
the spherical cap area A.

Lemma 1 (The conditional nearest satellite distance distribu-
tion). Let R = minxi∈Φ∩A ∥xi−u1∥2 be the nearest distance
from the typical user’s location u1 = (0, 0, RE) to a satellite
in Φ ∩ A. Then, the PDF of R is [4]

fR|Φ(A)>0(r) =

{
ν(λ,RS)re

−λπ
RS
RE

r2
for Rmin ≤ r ≤ Rmax

0 otherwise,

where ν(λ,RS) = 2πλRS

RE

e
λπ

RS
RE

(R2
S−R2

E)
e2λπRS(RS−RE)−1

, Rmin = RS −RE,
and Rmax =

√
R2

S −R2
E.

Proof. See the proof of Lemma 2 in [4]. ■

Lemma 2. Conditioned on that the distance between the
typical receiver and the associated satellite is r and Φ(A) > 0,
the Laplace transform of the aggregated interference power for
the nearest satellite association policy is derived as (11) on
the top of the next page.

Proof. Let xi be the associated satellite. Then we define the
aggregated interference power conditioned on Φ(A) > 0 and
∥xi −u1∥ = ri for both the strongest and the nearest satellite
association policies as

Iri =
∑

xj∈ΦI(xi)

ḠIHj∥xj − u1∥−αj , (12)

where ΦI(xi) = Φ\{xi} for the strongest association, ΦI(xi) =
Φ∩Ac

ri for the nearest association, and Ac
ri = A\Ari denotes

the set of satellites on the spherical cap outside Ari . Without
loss of generality, we assume xi = x1 and ri = r.
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LIr|Φ(A)>0,r(s) = exp


−2πλ

RS

RE

 Rmax

r


1− pLOS(v)

1
1 + sḠIv−αLOS

m

m − pNLOS
1

1 + sḠIv−αNLOS


 v dv


 (11)

Since Hj is the Nakagami-m random variable for the LOS
channel fading, the complementary cumulative distribution
function (CCDF) of Hj for LOS channels is

P[HLOS
j ≥ x] = e−mx

m−1
k=0

(mx)k

k!
. (13)

The CCDF of Hj for NLOS channels which follow Rayleigh
fading distribution is given as

P[HNLOS
j ≥ x] = e−x. (14)

We compute the Laplace transform of the aggregated interfer-
ence power as

LIr|Φ(A)>0,r(s) (15)

= E

e−sIr

 r,Φ(A) > 0


(16)

= E


 
xj∈ΦI(x1)

e−sḠIHjr
−αj
j


r,Φ(A) > 0


 (17)

(a)
= EΦ

 
xj∈ΦI(x1)


pLOS(rj)EHLOS

j


e−sḠIH

LOS
j r−αLOS

j


(18)

+ pNLOS(rj)EHNLOS
j


e−sḠIH

NLOS
j r−αNLOS

j

 r,Φ(A) > 0



where (a) comes from the PDFs of LOS and NLOS probability
distributions in (6). Regarding the nearest association, they
can reside only in Ac

r. Accordingly, let AI ∈ {A,Ac
r}

which is determined by the association policy. Then from the
probability generating functional (PGFL) of the PPP [11], [14],
(18) further becomes

exp


− λ



xi∈AI


1− pLOS(ri)EHLOS

i


e−sḠIH

LOS
i r−αLOS

i



−pNLOS(ri)EHNLOS
i


e−sḠIH

NLOS
i r−αNLOS

i


dxi



= exp


− λ



xi∈AI


1− pLOS(ri)

1
1 +

sḠIr
−αLOS

i

m

m

− pNLOS(ri)
1

1 + sḠIr
−αNLOS

i


dxi



(b)
= exp


− 2πλ

RS

RE

 Rmax

r


1− pLOS(v)

1
1 + sḠIv−αLOS

m

m

− pNLOS(v)
1

1 + sḠIv−αNLOS


vdv


(19)

where (b) comes from ∂|Av|
∂v = 2πRS

RE
v. This completes the

proof. ■

Theorem 1. In the interference-limited regime, i.e., σ̄2 → 0,
the coverage probability of the typical receiver for the nearest
satellite association policy is (20) on the top of the next page,
where ν̄n(λ,Rs) = ν(λ,Rs)

�
1− e−λ2π(RS−RE)RS


.

Proof. Without loss of generality, we assume xi = x1 and
ri = r in this proof. For the nearest satellite association, we
first compute the coverage probability conditioned on ∥x1 −
u1∥ = r and Φ(A) > 0 with σ̄2 → 0 as

P cov
SIR|Φ(A)>0(γ;λ, α,RS,m)

= Er


P
�
H1 ≥ rαγIr | r

Φ(A) > 0


(21)

(a)
= Er


EIr


pLOS(r)P

�
HLOS

1 ≥ rα
LOS

γIr | Ir


+ pNLOS(r)P
�
HNLOS

1 ≥ rα
NLOS

γIr | Ir
r

Φ(A) > 0



= Er


pLOS(r)EIr


m−1
k=0

mkγkrkα
LOS

k!
Ikr e

−mrα
LOS

γIr

r


+ pNLOS(r)EIr


e−rα

NLOS
γIr

r
 Φ(A) > 0


(22)

where (a) follows from the PDF of LOS/NLOS distribution
in (6). Then by using Lemma 2 and applying the deriva-
tive property of the Laplace transform, i.e., E


Xke−sX


=

(−1)k dkLX(s)
dsk

, (22) further becomes

Er


pLOS(r)

m−1
k=0

(−mγrα
LOS

)k

k!
·
dkLIr|Φ(A)>0,r

(s)

dsk


s=mγrαLOS

+ pNLOS(r) LIr|Φ(A)>0,r
(z)


z=γrαNLOS

Φ(A) > 0


(23)

(b)
= ν(λ,RS)×
 Rmax

Rmin


pLOS(r)

m−1
k=0

(−mγrα
LOS

)k

k!
·
dkLIr|Φ(A)>0,r

(s)

dsk


s=mγrαLOS

+ pNLOS(r) LIr|Φ(A)>0,r
(z)


z=γrαNLOS


re

−λπ
RS
RE

r2
dr

(24)

where (b) is from the expectation over the nearest satellite
distribution derived in Lemma 1. Multiplying P[Φ(A) > 0] =
1− e−λ2π(RS−RE)RS to (24) completes the proof. ■
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P cov
SIR (γ;λ, α,RS,m) = ν̄n(λ,RS)× (20)
∫ Rmax

Rmin

(
pLOS(r)

m−1∑
k=0

mkγkrkα
LOS

k!
(−1)k

dkLIr|Φ(A)>0,r
(s)

dsk

∣∣∣∣∣
s=mγrαLOS

+ pNLOS(r)LIr|Φ(A)>0,r
(z)

∣∣
z=γrαNLOS

)
re

−λπ
RS
RE

r2
dr
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Fig. 2. The coverage probability from numerical and theoretical results for
K = 10, β = 0.048, αLOS = 2, αNLOS = 3,m = 2, and h = 500 km.

III. SIMULATION RESULTS

In simulations, we first validate the accuracy of the derived
coverage expression by comparing it with the results obtained
from the simulation. This step allows us to ensure that the
analytical model aligns with the empirical observations. We
set h = 500 km which is 500 km. Additionally, we consider
m = 2 as a specific value for our analysis. Regarding the beam
gain, we set ḠI = −10 dB. For the purpose of simulations,
we define the average number of satellites within the typical
spherical cap as K, where K is given by K = λ|A|. For
the distance-dependent LOS and NLOS propagation probabil-
ity, we adopt the following exponential blockage probability
distribution [24]:

pLOS(r) = exp

(
−β cot

(
arcsin

(
R2

S −R2
E

2rRE
− r

2RE

)))
,

where β ≥ 0 is related to the geometry of the urban environ-
ment and plays a crucial role in our analytic model. It deter-
mines the LOS probability, which represents the likelihood of
having a clear line of sight between the transmitter and receiver
in a given urban scenario. This model has been validated
against collected LOS probabilities from the 3GPP model [24],
[25], demonstrating reasonable agreement between the two.
We adopt a specific value of β = 0.048, which is suitable for
the sub-urban scenario.

Fig. 2 shows the coverage probabilties for the considered
system obtained from a numerical result and the derived
theoretical expression under the nearest association rule. The

numerical coverage result with the strongest association rule.
We observe that the theoretical coverage probability exactly
matches with the numerical one, which validate the expres-
sion. In addition, the coverage probability with the nearest
association rule performs as a lower bound of the one with
the strongest association rule. Therefore, it is concluded that
the derived coverage expression can be considered as a lower
bound of the satellite network coverage with incorporating the
beam gain, and available for any SNR regime.

IV. CONCLUSION

This paper investigates the coverage performance of satel-
lite networks in the presence of shadowing by employing
stochastic geometry tools. By considering channel propagation
conditions and utilizing a distance-dependent LOS probability
function, we derive an analytical expression for the coverage
probability with the nearest satellite association rule. The
derived coverage probability exactly aligned with a numerical
coverage probability, which validates the derived theorem. In
addition, it is concluded that the derived coverage expression
can be considered as a lower bound of the satellite network
coverage with incorporating the beam gain, and available
for any SNR regime. Consequently, the derived coverage
probability offers valuable insights for satellite deployment
policies, taking into account the effect of channel shadowing.
These findings contribute to a better understanding of satellite
network performance and aid in making informed decisions
regarding system design and optimization.
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